THE STUDIES OF THE ARISING OF OSCILLATIONS IN THE QUASIHARMONIC MODEL OF THE SELFSUSTAINED OSCILLATORY MEDIUM UNDER MULTIPLICATIVE NOISE EXCITATION
Cite this article as:
Vadivasova Т. Е., Slepnev А. V. THE STUDIES OF THE ARISING OF OSCILLATIONS IN THE QUASIHARMONIC MODEL OF THE SELFSUSTAINED OSCILLATORY MEDIUM UNDER MULTIPLICATIVE NOISE EXCITATION. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 5, pp. 3-13. DOI: https://doi.org/10.18500/0869-6632-2012-20-5-3-13
The multiplicative noise influence on the selfsustained oscillatory medium near the oscillation threshold is studied. The chain of the identical quasiharmonic selfsustained oscillators with the periodic boundary conditions is taken as a simplest model of the oscillatory medium. The parameters of the oscillators are modulated with the white Gaussian noise. The stochastic bifurcations are analyzed for the cases of homogenous and spatiallynonhomogenous noise.
1. Garcia-Ojalvo J., Sancho J.M. Noise in spatially extended systems. New York: Springer, 1999.
2. Neiman A., Schimansky-Geier L., Cornell-Bell A., Moss F. Noise-enhanced phase synchronization in excitable media // Phys.Rev.Lett. 1999. Vol. 83, No 23. P. 4896.
3. Hu B., Zhou Ch. Phase synchronization in coupled nonidentical excitable systems and array-enhanced coherence resonance // Phys. Rev. E. 2000. Vol. 61, No 2. P. R1001(1–4).
4. Lindner J.F., Chandramouli S., Bulsara A.R., Locher M., Ditto W.L. ̈ Noise enhanced propagation // Phys.Rev.Lett. Vol.81(23). P. 5048.
5. Vadivasova T.E, Strelkova G.I, Anishchenko V.S. Phase-frequency synchronization in a chain of periodic oscillators in the presence of noise and harmonic forcings // Phys. Rev. E. 2001. Vol. 63. P. 036225(1–8).
6. Anishchenko V.S., Akopov A.A., Vadivasova T.E., Strelkova G.I. Mechanisms of chaos onset in an inhomogeneous medium under cluster synchronization destruction // New Journal of Physics. 2006. Vol. 8. P. 84(1–11).
7. Shabunin A.V., Feudel U., Astakhov V.V. Phase multistability and phase synchroni-zation in an array of locally coupled period-doubling oscillators // Physical Review E. 2009. Vol. 80, No 2. P. 026211.
8. Слепнев А.В., Вадивасова Т.Е. Бифуркации удвоения периода и эффекты шумового воздействия в мультистабильной автоколебательной среде // Известия вузов. Прикладная нелинейная динамика. 2011. Т. 19, No 4. С. 53.
9. Хорстхемке В., Лефевр Р. Индуцированные шумом переходы. М.: Мир, 1987.
10. Arnold L. Random dynamical systems. Chapter 9. Bifurcation theory. Spriger, 2003.
11. Arnold L., Sri Namachchivaya N., Schenk-Hoppe K.R. ́ Toward an undestanding of stochastic Hopf bifurcation: A case study // Int. J. of Bifurcation and Chaos. 1996. Vol. 6. P. 1947.
12. Вадивасова Т.Е., Анищенко В.С. Стохастические бифуркации // Известия вузов. Прикладная нелинейная динамика. 2009. Т. 17, No 5. С. 3.
BibTeX
author = {Т. Е. Vadivasova and А. V. Slepnev},
title = {THE STUDIES OF THE ARISING OF OSCILLATIONS IN THE QUASIHARMONIC MODEL OF THE SELFSUSTAINED OSCILLATORY MEDIUM UNDER MULTIPLICATIVE NOISE EXCITATION},
year = {2012},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {20},number = {5},
url = {https://old-andjournal.sgu.ru/en/articles/the-studies-of-the-arising-of-oscillations-in-the-quasiharmonic-model-of-the-selfsustained},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2012-20-5-3-13},pages = {3--13},issn = {0869-6632},
keywords = {Selfoscillatory medium,quasiharmonic approximation,stochastic bifurcation,noise influence.},
abstract = {The multiplicative noise influence on the selfsustained oscillatory medium near the oscillation threshold is studied. The chain of the identical quasiharmonic selfsustained oscillators with the periodic boundary conditions is taken as a simplest model of the oscillatory medium. The parameters of the oscillators are modulated with the white Gaussian noise. The stochastic bifurcations are analyzed for the cases of homogenous and spatiallynonhomogenous noise. }}