THE STUDIES OF THE ARISING OF OSCILLATIONS IN THE QUASI­HARMONIC MODEL OF THE SELF­SUSTAINED OSCILLATORY MEDIUM UNDER MULTIPLICATIVE NOISE EXCITATION


Cite this article as:

Vadivasova Т. Е., Slepnev А. V. THE STUDIES OF THE ARISING OF OSCILLATIONS IN THE QUASI­HARMONIC MODEL OF THE SELF­SUSTAINED OSCILLATORY MEDIUM UNDER MULTIPLICATIVE NOISE EXCITATION. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 5, pp. 3-13. DOI: https://doi.org/10.18500/0869-6632-2012-20-5-3-13


The multiplicative noise influence on the self­sustained oscillatory medium near the oscillation threshold is studied. The chain of the identical quasi­harmonic self­sustained oscillators with the periodic boundary conditions is taken as a simplest model of the oscillatory medium. The parameters of the oscillators are modulated with the white Gaussian noise. The stochastic bifurcations are analyzed for the cases of homogenous and spatially­nonhomogenous noise.

DOI: 
10.18500/0869-6632-2012-20-5-3-13
Literature

1. Garcia-Ojalvo J., Sancho J.M. Noise in spatially extended systems. New York: Springer, 1999.

2. Neiman A., Schimansky-Geier L., Cornell-Bell A., Moss F. Noise-enhanced phase synchronization in excitable media // Phys.Rev.Lett. 1999. Vol. 83, No 23. P. 4896.

3. Hu B., Zhou Ch. Phase synchronization in coupled nonidentical excitable systems and array-enhanced coherence resonance // Phys. Rev. E. 2000. Vol. 61, No 2. P. R1001(1–4).

4. Lindner J.F., Chandramouli S., Bulsara A.R., Locher M., Ditto W.L.  ̈ Noise enhanced propagation // Phys.Rev.Lett. Vol.81(23). P. 5048.

5. Vadivasova T.E, Strelkova G.I, Anishchenko V.S. Phase-frequency synchronization in a chain of periodic oscillators in the presence of noise and harmonic forcings // Phys. Rev. E. 2001. Vol. 63. P. 036225(1–8).

6. Anishchenko V.S., Akopov A.A., Vadivasova T.E., Strelkova G.I. Mechanisms of chaos onset in an inhomogeneous medium under cluster synchronization destruction // New Journal of Physics. 2006. Vol. 8. P. 84(1–11).

7. Shabunin A.V., Feudel U., Astakhov V.V. Phase multistability and phase synchroni-zation in an array of locally coupled period-doubling oscillators // Physical Review E. 2009. Vol. 80, No 2. P. 026211.

8. Слепнев А.В., Вадивасова Т.Е. Бифуркации удвоения периода и эффекты шумового воздействия в мультистабильной автоколебательной среде // Известия вузов. Прикладная нелинейная динамика. 2011. Т. 19, No 4. С. 53.

9. Хорстхемке В., Лефевр Р. Индуцированные шумом переходы. М.: Мир, 1987.

10. Arnold L. Random dynamical systems. Chapter 9. Bifurcation theory. Spriger, 2003.

11. Arnold L., Sri Namachchivaya N., Schenk-Hoppe K.R.  ́ Toward an undestanding of stochastic Hopf bifurcation: A case study // Int. J. of Bifurcation and Chaos. 1996. Vol. 6. P. 1947.

12. Вадивасова Т.Е., Анищенко В.С. Стохастические бифуркации // Известия вузов. Прикладная нелинейная динамика. 2009. Т. 17, No 5. С. 3.

Status: 
одобрено к публикации
Short Text (PDF): 

BibTeX

@article{Вадивасова-IzvVUZ_AND-20-5-3,
author = {Т. Е. Vadivasova and А. V. Slepnev},
title = {THE STUDIES OF THE ARISING OF OSCILLATIONS IN THE QUASI­HARMONIC MODEL OF THE SELF­SUSTAINED OSCILLATORY MEDIUM UNDER MULTIPLICATIVE NOISE EXCITATION},
year = {2012},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {20},number = {5},
url = {https://old-andjournal.sgu.ru/en/articles/the-studies-of-the-arising-of-oscillations-in-the-quasiharmonic-model-of-the-selfsustained},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2012-20-5-3-13},pages = {3--13},issn = {0869-6632},
keywords = {Self­oscillatory medium,quasi­harmonic approximation,stochastic bifurcation,noise influence.},
abstract = {The multiplicative noise influence on the self­sustained oscillatory medium near the oscillation threshold is studied. The chain of the identical quasi­harmonic self­sustained oscillators with the periodic boundary conditions is taken as a simplest model of the oscillatory medium. The parameters of the oscillators are modulated with the white Gaussian noise. The stochastic bifurcations are analyzed for the cases of homogenous and spatially­nonhomogenous noise. }}