TREATMENT OF SEDOV’S SOLUTION AS SERIES INTERMEDIATE ASYMPTOTICS IN FLOW FROM STRONG BLAST
Cite this article as:
Chernov I. A. TREATMENT OF SEDOV’S SOLUTION AS SERIES INTERMEDIATE ASYMPTOTICS IN FLOW FROM STRONG BLAST. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 4, pp. 33-43. DOI: https://doi.org/10.18500/0869-6632-2010-18-4-33-43
It is offered to consider Sedov’s selfsimilar solution which earlier was used for exposition only an initial stage of flow from strong blast, in a role of an intermediate asymptotics of matching flow and for any medial, but not so major moment of time. Thus the index of selfsimilarity should be increased. The upper border of this range is certain from a condition of a constancy of an entropy behind a shock wave.
1. Седов Л.И. Движение воздуха при сильном взрыве // ДАН СССР. 1946. Т. 52, No 1. С. 17.
2. Taylor G.I. The formation of a blast wave by a very intense explosion // Proc. Roy. Soc. 1950. A201, No 1065. Р. 159.
3. Седов Л.И. Методы подобия и размерностей в механике. Изд. 5-е. М.: Наука, 1965. 386 с.
4. Коробейников В.П., Мельникова Н.С., Рязанов Е.В. Теория точечного взрыва. М.: Гос. изд-во физ-мат. лит-ры., 1961. 332 с.
5. Коробейников В.П. Задачи теории точечного взрыва. М.: Наука, 1985. 400 с.
6. Овсянников Л.В. Групповой анализ дифференциальных уравнений. М.: Наука, 1978. 400 с.
7. Баренблатт Г.И. Подобие, автомодельность, промежуточная асимптотика. Ленинград: Гидрометеоиздат, 1978. 207 с.
8. Чернов И.А. Гомэнтропическая модель сильного точечного взрыва // Математика. Механика. Вып. 11. Саратов: Изд-во Сарат. ун-та. 2009. С. 144.
9. Бурнова Н.С. (Мельникова Н.С.) Исследование задачи о точечном взрыве. Автореф. дис... канд. физ.-мат. наук / МГУ. М., 1953. 24 с.
10. Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука, 1966. 686 с.
BibTeX
author = {I. A. Chernov},
title = {TREATMENT OF SEDOV’S SOLUTION AS SERIES INTERMEDIATE ASYMPTOTICS IN FLOW FROM STRONG BLAST},
year = {2010},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {18},number = {4},
url = {https://old-andjournal.sgu.ru/en/articles/treatment-of-sedovs-solution-as-series-intermediate-asymptotics-in-flow-from-strong-blast},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2010-18-4-33-43},pages = {33--43},issn = {0869-6632},
keywords = {Nonstationary flows of gas,shock wave,automodelling (selfsimilar) solution,intermediate asymptotic,blast.},
abstract = {It is offered to consider Sedov’s selfsimilar solution which earlier was used for exposition only an initial stage of flow from strong blast, in a role of an intermediate asymptotics of matching flow and for any medial, but not so major moment of time. Thus the index of selfsimilarity should be increased. The upper border of this range is certain from a condition of a constancy of an entropy behind a shock wave. }}