TWO-DIMENSIONAL SELF-ORGANIZED CRITICAL SANDPILE MODELS WITH ANISOTROPIC DYNAMICS OF THE ACTIVITY PROPAGATION
Cite this article as:
Подлазов А. В. TWO-DIMENSIONAL SELF-ORGANIZED CRITICAL SANDPILE MODELS WITH ANISOTROPIC DYNAMICS OF THE ACTIVITY PROPAGATION. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 6, pp. 25-46. DOI: https://doi.org/10.18500/0869-6632-2012-20-6-25-46
We numerically and analytically investigate two self-organized critical sandpile models with anisotropic dynamics of the activity propagation – Dhar–Ramaswamy and discrete Feder–Feder models. The full set of critical indices for these models is theoretically
determined. We also give systematical statement of the finite-size scaling ansatz and of its use for the solving of self-organized critical systems. Studying the discrete Feder–Feder model we find and explain a number of nontrivial phenomena, such as spontaneous anisotropy, anomalous diffusion and the appearance of midline ditch of filling.
1. Bak P., Tang C., Wiesenfeld K. Self-organized criticality: An explanation of 1/f-noise // Phys. Rev. Lett. 1987. Vol. 59, № 4. P. 381.
2. Bak P., Tang C., Wiesenfeld K. Self-organized criticality // Phys. Rev. A. 1988. Vol. 38, № 1. P. 364.
3. Ivashkevich E.V. Critical behavior of the sandpile model as a self-organizing branching process// Phys. Rev. Lett. 1996. Vol. 76, № 18. P. 3368.
4. Dhar D., Ramaswamy R. Exactly solved model of self-organized critical phenomena// Phys. Rev. Lett. 1989. Vol. 63, № 16. P. 1659.
5. Christensen K., Olami Z. Sandpile models with and without an underlying spatial structure// Phys. Rev. E. 1993. Vol. 48, № 5. P. 3361.
6. Dhar D., Majumdar S.N. Abelian sandpile model on the Bethe lattice // J. Phys. A: Math. Gen. 1990. Vol. 23. P. 4333.
7. Ма Ш. Современная теория критических явлений. М.: Мир, 1980. 298 с.
8. Manna S.S. Two-state model of self-organized criticality// L. Phys. A: Math. Gen. 1991. Vol. 24. P. L363.
9. Подлазов А.В. Двумерная самоорганизованно-критическая модель Манна. М.: ИПМ им. М.В. Келдыша, 2012. Препринт № 42. 20 с. http://library.keldysh.ru/preprint.asp?id=2012-42
10. Подлазов А.В. Сравнение двумерных изотропных консервативных самоорганизованно-критических моделей типа кучи песка. М.: ИПМ им. М.В. Келдыша, 2012. Препринт № 43. http://library.keldysh.ru/preprint.asp?id=2012-43
11. Малинецкий Г.Г., Подлазов А.В. Сравнение двумерных изотропных консервативных самоорганизованно-критических моделей типа кучи песка// Вестник МГТУ им. Н.Э. Баумана. Естественные науки. 2012. Спец. выпуск № 2 «Математическое моделирование в технике». C. 119.
12. Kadanoff L.P., Nagel S.R., Wu L., Zhou S. Scaling and universality in avalanches// Phys. Rev. A. 1989. Vol. 39, № 12. P. 6524.
13. Bak P. How nature works: The science of self-organized criticality. Springer-Verlag, New York, Inc. 1996.
14. Sornette D., Johansen A., Dornic I. Mapping self-organized criticality onto criticality // J. Phys. I (France). 1995. Vol. 5. P. 325.
15. Clar S., Drossel B., Schwabl F. Forest fires and other examples of self-organized criticality// J. Phys.: Cond. Mat. 1996. Vol. 8. P. 6803.
16. Feder H.J.S., Feder J. Self-organized criticality in a stick-slip process// Phys. Rev. Lett. 1991. Vol. 66, № 20. P. 2669.
BibTeX
author = {А. V Podlazov},
title = {TWO-DIMENSIONAL SELF-ORGANIZED CRITICAL SANDPILE MODELS WITH ANISOTROPIC DYNAMICS OF THE ACTIVITY PROPAGATION},
year = {2012},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {20},number = {6},
url = {https://old-andjournal.sgu.ru/en/articles/two-dimensional-self-organized-critical-sandpile-models-with-anisotropic-dynamics-of-the},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2012-20-6-25-46},pages = {25--46},issn = {0869-6632},
keywords = {Self-organized criticality,sandpile models,scale invariance,power laws,finitesize scaling,anomalous diffusion,spontaneous anisotropy},
abstract = { We numerically and analytically investigate two self-organized critical sandpile models with anisotropic dynamics of the activity propagation – Dhar–Ramaswamy and discrete Feder–Feder models. The full set of critical indices for these models is theoretically determined. We also give systematical statement of the finite-size scaling ansatz and of its use for the solving of self-organized critical systems. Studying the discrete Feder–Feder model we find and explain a number of nontrivial phenomena, such as spontaneous anisotropy, anomalous diffusion and the appearance of midline ditch of filling. }}