TWO-PARAMETRIC BIFURCATIONAL ANALYSIS OF FORMATION AND DESTRUCTION OF REGIMES OF PARTIAL SYNCHRONIZATION OF CHAOS IN ENSEMBLE OF THREE DISCRETE-TIME OSCILLATORS
Cite this article as:
Shabunin А. V., Nikolaev S. М., Astakhov V. V. TWO-PARAMETRIC BIFURCATIONAL ANALYSIS OF FORMATION AND DESTRUCTION OF REGIMES OF PARTIAL SYNCHRONIZATION OF CHAOS IN ENSEMBLE OF THREE DISCRETE-TIME OSCILLATORS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 6, pp. 40-55. DOI: https://doi.org/10.18500/0869-6632-2005-13-5-40-55
We invetsigate mechanisms of appearance and disappearance of regimes of partial synchronization of chaos in a ring of three logistic maps with symmetric diffusive coupling. Two-parametric bifurcational analysis is carried out and typical oscillating regimes and transitions between them are considered. Partial chaotic synchronization is revealed to lead to generalized synchronization.
1. Шабунин А.В., Николаев С.М., Астахов В.В. Двухпараметрический бифуркационный анализ режимов полной синхронизации хаоса в ансамбле из трех осцилляторов с дискретным временем // Изв. вузов. Прикладная нелинейная динамика. 2005. Т. 13, No 5–6. С. 24.
2. Belykh V.N., Belykh I.V., Hasler M. Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems // Phys. Rev. E. 2000. Vol. 62. P. 6332.
3. Pogromsky A., Santoboni G., Nijmeijer H. Partial synchronization: from symmetry towards stability // Physica D. 2002. Vol. 172. P. 65.
4. Maistrenko Y., Popovich O., Hasler M. On strong and weak chaotic partial synchroni-zation // Int. J. of Bifurcation and Chaos. 2000. Vol. 10. P. 179.
5. Yanchuk S., Maistrenko Y., Mosekilde E. Partial synchronization and clustering in a system of diffusively coupled chaotic oscillators // Mathematics and Computers in Simulation. 2001. Vol. 54. P. 491.
6. Taborov A.V., MaistrenkoY.L., Mosekilde E. Partial synchronization in a system of coupled logistic maps // Int. J. of Bifurcation and Chaos. 2000. Vol. 10. P. 1051.
7. Tsukamoto N., Miyazaki S., Fujisaka H. Synchronization and intermittency in threecoupled chaotic oscillators // Phys. Rev. E. 2003. Vol. 67. P. 016212.
8. Abarbanel H.D.I., Rulkov N.F., Sushchik M.M. Generalized synchronization of chaos: The auxiliary system approach // Phys. Rev. E. 1996. Vol. 53. P. 4528.
9. Анищенко В.С., Астахов В.В., Николаев В.В., Шабунин А.В. Исследование хаотической синхронизации в системе симметрично связанных генераторов / Радиотехника и электроника. 2000. Т. 45. С. 196.
10. Shabunin A., Astakhov V., Kurths J. Quantitative analysis of chaotic synchronization by means of coherence // Phys. Rev. E. 2005. Vol. 72. P. 016218.
11. Rosenblum M.G., Pikovsky A.S., Kurths J. From phase to lag synchronization in
coupled chaotic oscillators // Phys. Rev. Lett. 1997. Vol. 78. P. 4193.
BibTeX
author = {А. V. Shabunin and S. М. Nikolaev and V. V. Astakhov},
title = {TWO-PARAMETRIC BIFURCATIONAL ANALYSIS OF FORMATION AND DESTRUCTION OF REGIMES OF PARTIAL SYNCHRONIZATION OF CHAOS IN ENSEMBLE OF THREE DISCRETE-TIME OSCILLATORS},
year = {2005},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {13},number = {6},
url = {https://old-andjournal.sgu.ru/en/articles/two-parametric-bifurcational-analysis-of-formation-and-destruction-of-regimes-of-partial},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2005-13-5-40-55},pages = {40--55},issn = {0869-6632},
keywords = {-},
abstract = {We invetsigate mechanisms of appearance and disappearance of regimes of partial synchronization of chaos in a ring of three logistic maps with symmetric diffusive coupling. Two-parametric bifurcational analysis is carried out and typical oscillating regimes and transitions between them are considered. Partial chaotic synchronization is revealed to lead to generalized synchronization. }}