TWO-PARAMETRIC BIFURCATIONAL ANALYSIS OF FORMATION AND DESTRUCTION OF REGIMES OF PARTIAL SYNCHRONIZATION OF CHAOS IN ENSEMBLE OF THREE DISCRETE-TIME OSCILLATORS


Cite this article as:

Shabunin А. V., Nikolaev S. М., Astakhov V. V. TWO-PARAMETRIC BIFURCATIONAL ANALYSIS OF FORMATION AND DESTRUCTION OF REGIMES OF PARTIAL SYNCHRONIZATION OF CHAOS IN ENSEMBLE OF THREE DISCRETE-TIME OSCILLATORS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 6, pp. 40-55. DOI: https://doi.org/10.18500/0869-6632-2005-13-5-40-55


We invetsigate mechanisms of appearance and disappearance of regimes of partial synchronization of chaos in a ring of three logistic maps with symmetric diffusive coupling. Two-parametric bifurcational analysis is carried out and typical oscillating regimes and transitions between them are considered. Partial chaotic synchronization is revealed to lead to generalized synchronization.

Key words: 
-
DOI: 
10.18500/0869-6632-2005-13-5-40-55
Literature

1. Шабунин А.В., Николаев С.М., Астахов В.В. Двухпараметрический бифуркационный анализ режимов полной синхронизации хаоса в ансамбле из трех осцилляторов с дискретным временем // Изв. вузов. Прикладная нелинейная динамика. 2005. Т. 13, No 5–6. С. 24.

2. Belykh V.N., Belykh I.V., Hasler M. Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems // Phys. Rev. E. 2000. Vol. 62. P. 6332.

3. Pogromsky A., Santoboni G., Nijmeijer H. Partial synchronization: from symmetry towards stability // Physica D. 2002. Vol. 172. P. 65.

4. Maistrenko Y., Popovich O., Hasler M. On strong and weak chaotic partial synchroni-zation // Int. J. of Bifurcation and Chaos. 2000. Vol. 10. P. 179.

5. Yanchuk S., Maistrenko Y., Mosekilde E. Partial synchronization and clustering in a system of diffusively coupled chaotic oscillators // Mathematics and Computers in Simulation. 2001. Vol. 54. P. 491.

6. Taborov A.V., MaistrenkoY.L., Mosekilde E. Partial synchronization in a system of coupled logistic maps // Int. J. of Bifurcation and Chaos. 2000. Vol. 10. P. 1051.

7. Tsukamoto N., Miyazaki S., Fujisaka H. Synchronization and intermittency in threecoupled chaotic oscillators // Phys. Rev. E. 2003. Vol. 67. P. 016212.

8. Abarbanel H.D.I., Rulkov N.F., Sushchik M.M. Generalized synchronization of chaos: The auxiliary system approach // Phys. Rev. E. 1996. Vol. 53. P. 4528.

9. Анищенко В.С., Астахов В.В., Николаев В.В., Шабунин А.В. Исследование хаотической синхронизации в системе симметрично связанных генераторов /  Радиотехника и электроника. 2000. Т. 45. С. 196.

10. Shabunin A., Astakhov V., Kurths J. Quantitative analysis of chaotic synchronization by means of coherence // Phys. Rev. E. 2005. Vol. 72. P. 016218.

11. Rosenblum M.G., Pikovsky A.S., Kurths J. From phase to lag synchronization in

coupled chaotic oscillators // Phys. Rev. Lett. 1997. Vol. 78. P. 4193.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Шабунин -IzvVUZ_AND-13-6-40,
author = {А. V. Shabunin and S. М. Nikolaev and V. V. Astakhov},
title = {TWO-PARAMETRIC BIFURCATIONAL ANALYSIS OF FORMATION AND DESTRUCTION OF REGIMES OF PARTIAL SYNCHRONIZATION OF CHAOS IN ENSEMBLE OF THREE DISCRETE-TIME OSCILLATORS},
year = {2005},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {13},number = {6},
url = {https://old-andjournal.sgu.ru/en/articles/two-parametric-bifurcational-analysis-of-formation-and-destruction-of-regimes-of-partial},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2005-13-5-40-55},pages = {40--55},issn = {0869-6632},
keywords = {-},
abstract = {We invetsigate mechanisms of appearance and disappearance of regimes of partial synchronization of chaos in a ring of three logistic maps with symmetric diffusive coupling. Two-parametric bifurcational analysis is carried out and typical oscillating regimes and transitions between them are considered. Partial chaotic synchronization is revealed to lead to generalized synchronization. }}