динамический хаос.

DYNAMICAL MODES AND NONLINEAR PHENOMENA IN MODIFIED AUTOOSCILLATORY SYSTEM WITH FREQUENCY-PHASE CONTROL

In the proposed paper, we investigate the dynamical behavior of the modified system with frequency-phase control, which uses two-channel discriminator in the circuit of phase control and multi-frequency discriminator with periodic nonlinearity in the circuit of frequency control. We consider the case of identical low-pass filters of the third order in the both control circuits.

BIFURCATIONS AND OSCILLATORY MODES IN COMPLEX SYSTEM WITH PHASE CONTROL

The results are produced of research of dynamical modes and bifurcation in a complex system with phase control, based on mathematical model with two degrees of freedom in the cylindrical phase space. The location of domains corresponding to different dynamical states of the system is established. The processes developing in the system as a result of loss stability of the synchronous mode, and scenarios of evolution of nonsynchronous modes under variation of system parameters are investigated.

REGULAR AND CHAOTIC DYNAMICS OF TWO-RING PHASE LOCKED SYSTEM Part 2 Peculiarities of nonlinear dynamics of frequency-phase system with identical third-order filters in control circuits

The results of investigation of dynamical modes in the model of oscillatory system with  frequency-phase control using multi-frequency discriminator inversely switched inthe chain of  frequency control are presented. The study was carried out on the basis of mathematical model of  the system with two degrees of freedom with the use of qualitative and numerical methods of nonlinear dynamics. It is shown that in such a system may be realized both synchronous and great  number of non-synchronous periodic and chaotic modes of different complexity.

DESTRUCTION OF THE COHERENT MODE IN SYSTEM OF TWO OSCILLATORS AT THE STRONG RESONANT MUTUAL COUPLINGS

The hypothesis about destruction of a coherent mode in system of two mutual couplings microwave oscillators is examine, each of which in a stand­alone mode generates stable unifrequent oscillations. It is experimentally shown, that at strong resonant couplings synchronous oscillations are unstable, therefore the system go over in in a mode of dynamic chaos.

NONLINEAR EFFECTS IN AUTOOSCILLATORY SYSTEM WITH FREQUENCY- PHASE CONTROL

Dynamical modes and nonlinear phenomena in the models of oscillatory system with frequency-phase control in the case of periodic nonlinear characteristics of frequency discriminator are investigated. Stability of synchronous mode is analyzed. The existences of a great number various periodic and chaotic nonsynchronous modes are established. Peculiarities of the system dynamics caused by parameters of frequency control loop are considered. The results are presented in the form of one- and two-parameter bifurcation diagrams, phase portraits, Poincare sections and waveforms of attractors.