We study synchronization in one- and two-dimentional ensembles of nonidentical Bonhoeffer–van der Pol oscillators. Small chains (number of elements N 6 4) are proved to have not less than 2N¡1 coexisting stable different synchronous regimes. The chain of N elements is supposed to have not less than 2N¡1 synchronous regimes at the same values of parameters. Formation of synchronization clusters at weak coupling is shown. Regimes, provided by existing of waves, setting rhythm for all elements in ensemble, are investigated.