VARIETY OF SYNCHRONOUS REGIMES IN ENSEMBLES OF NONIDENTICAL OSCILLATORS: Chain and lattice


Cite this article as:

Kryukov А. К., Osipov G. V. VARIETY OF SYNCHRONOUS REGIMES IN ENSEMBLES OF NONIDENTICAL OSCILLATORS: Chain and lattice. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 2, pp. 29-36. DOI: https://doi.org/10.18500/0869-6632-2009-17-2-29-36


We study synchronization in one- and two-dimentional ensembles of nonidentical Bonhoeffer–van der Pol oscillators. Small chains (number of elements N 6 4) are proved to have not less than 2N¡1 coexisting stable different synchronous regimes. The chain of N elements is supposed to have not less than 2N¡1 synchronous regimes at the same values of parameters. Formation of synchronization clusters at weak coupling is shown. Regimes, provided by existing of waves, setting rhythm for all elements in ensemble, are investigated.

DOI: 
10.18500/0869-6632-2009-17-2-29-36
Literature

1. Maurer J. and Libchaber A. // J.Phys. Lett. (France) 1982. Vol. 41. P. 515.

2. Brun E., Derighette B., Meier D., Holzner R., and Raveni M. // J.Opt.Soc.Am. B. 1985. Vol. 2. P. 156.

3. Dangoisse D.,Glorieux P., and Hennequin D. // Phys. Rev. A. 1987. Vol. 36. P. 4775.

4. Thompson J.M.T. and Stewart H.B. // Nonlinear Dynamics and Chaos. Wiley, Chichester, 1986.

5. Foss J., Longtin A., Mensour B., and Milton J. // Phys. Rev. Lett. 1996. Vol. 76. P. 708.

6. Simonotto E.,Riani M., Seife C., Roberts M., Twitty J., and Moss F. // Phys. Rev. Lett. 1997. Vol. 78. P. 1186.

7. Pikovsky A.S., Rosenblum M.G., and Kurths J. Cambridge University Press, Cambridge, 2001.

8. Mosekilde E., Maistrenko Yu., and Postnov D. World Scientific, Singapore, 2002.

9. Osipov G.V., Kurths J., and Zhou Ch. Springer, Berlin, 2007.

10. Sompolinsky H., Kanter I. // Phys. Rev. Lett. 1986. Vol. 57. P. 2861.

11. Canavier C., Baxter D., Clark J. and Byrne J. // J. Neurophysiol. 1993. Vol. 69. P. 2252.

12. Rabinovich M.I., Varona P., Selverston A.I., and Abarbanel H.D.I. // Rev. of Modern Phys. 2006. Vol. 78. P. 1213.

13. Bonhoeffer K.F. // Naturwissenschaften. 1953. Vol. 40. P. 301.

14. Torre V. //J.Theor.Biol. 1976. Vol. 61. P. 55.

15. Osipov G.V. and Sushchik M.M. // Phys.Rev.E. 1998. Vol. 58. P. 7198.

16. Macleod K., Backer A., and Laurent G.  ̈ // Nature. 1998. Vol. 395. P. 693.

17. Ambiguity in Mind and Nature / Eds P. Kruse and M. Stadler. New York. Springer-Verlag, 1995.

18. Mensour B. and Longtin A. // Phys. Lett. A. 1995. Vol. 205. P. 18.

19. Beuter A., Milton J.G., Labrie C., and Glass L. // IEEE Systems Man Cybern, 1989, 899.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Крюков-IzvVUZ_AND-17-2-29,
author = {А. К. Kryukov and G. V. Osipov },
title = {VARIETY OF SYNCHRONOUS REGIMES IN ENSEMBLES OF NONIDENTICAL OSCILLATORS: Chain and lattice},
year = {2009},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {17},number = {2},
url = {https://old-andjournal.sgu.ru/en/articles/variety-of-synchronous-regimes-in-ensembles-of-nonidentical-oscillators-chain-and-lattice},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2009-17-2-29-36},pages = {29--36},issn = {0869-6632},
keywords = {synchronization,multistability,synchronous regime,numerical methods,modeling,FitzHugh–Nagumo,Bonhoeffer–van der Pol.},
abstract = {We study synchronization in one- and two-dimentional ensembles of nonidentical Bonhoeffer–van der Pol oscillators. Small chains (number of elements N 6 4) are proved to have not less than 2N¡1 coexisting stable different synchronous regimes. The chain of N elements is supposed to have not less than 2N¡1 synchronous regimes at the same values of parameters. Formation of synchronization clusters at weak coupling is shown. Regimes, provided by existing of waves, setting rhythm for all elements in ensemble, are investigated. }}