By means of modeling and numeric simulation we consider, how the rise of extracellular potassium concentration due to the neuronal activity can affect the firing patterns of the neighboring neurons. To take into account mentioned above effects, we suggest simple extension of Hodgkin-Huxley model. We consider the behavior of 2, 4, and 8 excitable neurons being forced by external noisy stimulus. We reveal the main effects being the attributes of ionic coupling that are include the emergence of new time scales and spatially-ordered firing patterns.