АНАЛИЗ АТТРАКТОРОВ СТОХАСТИЧЕСКИ ВОЗМУЩЕННОЙ МОДЕЛИ «ХИЩНИК–ЖЕРТВА»


Образец для цитирования:

В работе рассматривается модель популяционной динамики «хищник–жертва» с насыщением хищника. Исследуются точки покоя и предельные циклы системы, проводится анализ их детерминированной устойчивости. Для исследования вероятностных свойств разброса случайных состояний вокруг аттракторов используется аппарат функции стохастической чувствительности. Демонстрируются возможности функции чувствительности в описании особенностей стохастических аттракторов модели «хищник–жертва».

DOI: 
10.18500/0869-6632-2009-17-2-37-53
Литература

1. Колмогоров А.Н. Качественное изучение математических моделей динамики популяций // Проблемы кибернетики. М.: Наука, 1972, вып. 25. С. 100.

2. Свирежев Ю.М., Логофет Д.О. Устойчивость биологических сообществ. М.: Наука, 1978.

3. Базыкин А.Д. Математическая биофизика взаимодействующих популяций. М.: Наука, 1985.

4. Turchin P. Complex population dynamics: A theoretical/empirical synthesis, Princeton University Press, 2003.

5. Гукенхеймер Дж., Холмс Ф. Нелинейные колебания, динамические системы и бифуркации векторных полей. Институт компьютерных исследований, 2002.

6. Анищенко В.С. Сложные колебания в простых системах. М.: Наука, 1990.

7. Музычук О.В. Вероятностные характеристики системы «хищник–жертва» со случайно изменяющимися параметрами // Изв. вузов. Прикладная нелинейная динамика. 1997. Т. 5, No 2–3. С. 80.

8. Понтрягин Л.С., Андронов А.А., Витт А.А. О статистическом рассмотрении динамических систем // ЖЭТФ. 1933. Т. 3, вып. 3. С. 165.

9. Стратонович Р.Л. Избранные вопросы теории флуктуаций в радиотехнике. М.: Сов. радио, 1961.

10. Рытов С.М. Введение в стохастическую радиофизику. М.: Наука, 1976.

11. Диментберг М.Ф. Нелинейные стохастические задачи механических колебаний. М.: Наука, 1980.

12. Неймарк Ю.И., Ланда П.С. Стохастические и хаотические колебания. М.: Наука, 1987.

13. Анищенко В.С., Вадивасова Т.Е., Нейман А.Б., Стрелкова Г.И., Шиманский-Гайер Л. Нелинейные эффекты в хаотических и стохастических системах. Москва-Ижевск: Институт компьютерных исследований, 2003.

14. Хорстхемке В., Лефевр Р. Индуцированные шумом переходы. М.: Мир, 1987. С. 400.

15. Landa P.S., McClintock P.V.E. Changes in the dynamical behavior of nonlinear systems induced by noise // Physics Reports. 2000. Vol. 323. P. 1.

16. Lindner B., Garcia-Ojalvo J., Neiman A., Schimansky-Geier L. Effects of noise in excitable systems // Physics Reports. 2004. Vol. 392. P. 321.

17. Gammaitoni L. et al. Stochastic resonance // Rev. Mod. Phys. 1998. Vol. 70. P. 223.

18. McDonnell M.D., Stocks N.G., Pearce C.E.M., Abbott D. Stochastic resonance: From suprathreshold stochastic resonance to stochastic signal quantization. Cambridge University Press, 2008.

19. Matsumoto K., Tsuda I. Noise induced order // J. Stat. Phys. 1983. Vol. 31. P. 87.

20. Gassmann F. Noise-induced chaos-order transitions // Phys. Rev. E. 1997. Vol. 55. P. 2215.

21. Gao J.B., Hwang S.K., Liu J.M. When can noise induce chaos? // Phys. Rev. Lett. 1999. Vol. 82. P. 1132.

22. Zaks M.A., Sailer X., Schimansky-Geier L., Neiman A.B. Noise induced complexity: From subthreshold oscillations to spiking in coupled excitable systems // Chaos. 2005. Vol. 15. P. 026117.

23. Agez G., Glorieux P., Taki M., Louvergneaux E. Two-dimensional noise-sustained structures in optics: Theory and experiments // Phys. Rev. A. 2006. Vol. 74. P. 043814.

24. Clerc M.G., Falcon C., Tirapegui E. Front propagation sustained by additive noise // Phys. Rev. E. 2006. Vol. 74. P. 011303.

25. Arnold L. Random Dynamical Systems. Springer-Verlag, 1998.

26. Бланк М.Л. Конечномерные стохастические аттракторы бесконечномерных динамических систем // Функц. анализ и его прил. 1986. 20:2. C.54.

27. Бланк М.Л. Малые возмущения хаотических динамических систем // Успехи мат. наук. 1989. Т. 44, Вып. 6(270). С. 3.

28. Scheutzow M. Comparison of various concepts of a random attractor: A case study // Arch. Math. 2002. Vol. 78. P. 233.

29. Schmalfuss B. The random attractor of the stochastic Lorenz system // ZAMP. 1997. Vol. 48. P. 951.

30. Lefever R., Turner J. Sensitivity of a Hopf bifurcation to external multiplicative noise // Fluctuations and Sensitivity in Equilibrium Systems / ed. by W. Horsthemke and D.K. Kondepudi. Berlin: Springer. 1984. P. 143.

31. Lefever R., Turner J. Sensitivity of a Hopf bifurcation to multiplicative colored noise // Phys. Rev. Lett. 1986. Vol. 56. P. 1631.

32. Arnold L., Bleckert G., Schenk-Hoppe K. The stochastic Brusselator: Parametric noise destroys Hopf bifurcation // Stochastic Dynamics. Bremen. 1997. P. 71. New-York: Springer, 1999.

33. Malick K., Marcq P. Stability analysis of noise-induced Hopf bifurcation // Eur. Phys. J. 2003. Vol. 36. P. 119.

34. Leung H.K. Stochastic Hopf bifurcation in a biased van der Pol model // Physica A. 1998. Vol. 254. P. 146.

35. Namachchivaya N.Sri. Hopf bifurcation in the presence of both parametric and external stochastic excitations // J. Appl. Mech. 1988. Vol. 110. P. 923.

36. Schenk-Hoppe K.R. Bifurcation scenarios of the noisy Duffing–van der Pol oscillator // Nonlinear Dynamics. 1996. Vol. 11. P. 255.

37. Bashkirtseva I., Ryashko L., Schurz H. Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances// Chaos, Solitons and Fractals. 2009. Vol. 39. P. 7.

38. Bashkirtseva I. A., Ryashko L. B. Sensitivity analysis of the stochastically and periodically forced Brusselator // Physica A. 2000. Vol. 278. P. 126.

39. Fedotov S., Bashkirtseva I., Ryashko L. Stochastic dynamo model for subcritical transition // Phys. Rev. E. 2006. Vol. 73. P. 066307.

40. Вентцель А.Д., Фрейдлин М.И. Флуктуации в динамических системах под действием малых случайных возмущений. М.: Наука, 1979.

41. Башкирцева И.А., Ряшко Л.Б. Метод квазипотенциала в анализе чувствительности автоколебаний к стохастическим возмущениям // Изв.вузов.Прикладная нелинейная динамика. 1998. Т. 6, No 5. С. 19.

42. Башкирцева И.А., Ряшко Л.Б. Метод квазипотенциала в исследовании локальной устойчивости предельных циклов к случайным возмущениям // Изв. вузов. Прикладная нелинейная динамика. 2001. Т. 9, No 6. С. 104.

43. Rosenzweig M.L., MacArthur R.H. Graphical representation and stability conditions of predator-prey interactions// Amer. Natur. 1963. Vol. 97. P. 209.

44. Paladin G., Serva M., Vulpiani A. Complexity in dynamical systems with noise // Phys. Rev. Letters. 1995. Vol. 74, No 1. P. 66.

Статус: 
одобрено к публикации
Краткое содержание (PDF): 
Текст в формате PDF: 

BibTeX

@article{Bashkirtseva-IzvVUZ_AND-17-2-37,
author = {Ирина Адольфовна Башкирцева and Лариса Владимировна Карпенко and Лев Борисович Ряшко },
title = {АНАЛИЗ АТТРАКТОРОВ СТОХАСТИЧЕСКИ ВОЗМУЩЕННОЙ МОДЕЛИ «ХИЩНИК–ЖЕРТВА»},
year = {2009},
journal = {Известия высших учебных заведений. Прикладная нелинейная динамика},
volume = {17},number = {2},
url = {https://old-andjournal.sgu.ru/ru/articles/analiz-attraktorov-stohasticheski-vozmushchennoy-modeli-hishchnik-zhertva},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2009-17-2-37-53},pages = {37--53},issn = {0869-6632},
keywords = {Популяционная динамика,равновесия,предельные циклы,стохастическая чувствительность.},
abstract = {В работе рассматривается модель популяционной динамики «хищник–жертва» с насыщением хищника. Исследуются точки покоя и предельные циклы системы, проводится анализ их детерминированной устойчивости. Для исследования вероятностных свойств разброса случайных состояний вокруг аттракторов используется аппарат функции стохастической чувствительности. Демонстрируются возможности функции чувствительности в описании особенностей стохастических аттракторов модели «хищник–жертва». }}