АНАЛОГИЯ В ЗАДАЧАХ О ВЗАИМОДЕЙСТВИИ ЭЛЕКТРОННЫХ И ГИДРОДИНАМИЧЕСКИХ ПОТОКОВ С ПОЛЯМИ РЕЗОНАТОРОВ И ПЕРИОДИЧЕСКИХ СТРУКТУР
Образец для цитирования:
Уравнения гидродинамики невязкой сжимаемой жидкости преобразованы к виду, удобному для построения самосогласованной теории взаимодействия гидродинамических потоков с полями резонаторов и периодических структур по аналогии с теорией устройств СВЧ электроники со скрещенными электрическим и магнитным статическими полями. В качестве возбуждаемого акустического поля рассматривается поле скоростей, а в качестве источников – завихренность в потоке. Для двумерных задач в пренебрежении нелинейностью собственных акустических колебаний и сжимаемостью жидкости в области движения вихрей получены уравнения возбуждения акустических резонаторов в форме, полностью аналогичной уравнениям возбуждения электродинамических резонаторов. Для трехмерных резонаторов проведено рассмотрение, повторяющее электродинамическую теорию по своей общей структуре, хотя полной аналогии в этом случае не получается. Для иллюстрации решения самосогласованных уравнений рассматривается динамика плоской ленты вихрей, взаимодействующих с периодической структурой типа «гребенки». Решается самосогласованная задача для случая взаимодействия вихревого потока с произвольной периодической структурой. Получено дисперсионное уравнение задачи и на основе его анализа указаны конструкции гидродинамических устройств, являющихся полными аналогами электронных лучевых приборов со скрещенными полями.
1. Элаши Ш. Волны в активных и пассивных периодических структурах // ТИИЭР. 1976. Т. 64, No 12. С. 18.
2. Андронов А.А., Фабрикант А.Л. Затухание Ландау, ветровые волны и свисток // В кн.: Нелинейные волны. М.: Наука. 1979, С. 68–104.
3. Андронов А.А., Фабрикант А.Л. К теории аэродинамического самовозбуждения звука: усиление поверхностных волн // Акустический журнал. 1980. Т. 26, No 5. С. 655–662.
4. Пирс Дж. Лампа с бегущей волной. М.: Сов. Радио, 1952. 230 с.
5. Вайнштейн Л.А., Солнцев В.А. Лекции по сверхвысокочастотной электронике. М.: Сов. Радио, 1973. 400 с.
6. Шевчик В.Н., Трубецков Д.И. Аналитические методы расчета в электронике СВЧ. М.: Сов. радио, 1970. 584 с.
7. Релятивистская высокочастотная электроника. Горький: ИПФ, 1979. 298 с.
8. Электроника ламп с обратной волной / Под ред. В.Н. Шевчика и Д.И. Трубецкова. Саратов: Изд-во СГУ, 1975. 194 с.
9. Стретт Дж.В. (лорд Рэлей). Теория звука. М.: Гостехиздат, 1955. 504 с.
10. Фейнман Р., Лейтон Р., Сэндс М. Феймановские лекции по физике. Т. 5. М.: Мир, 1966. С. 246–249.
11. Бреховских Л.М. Поверхностные волны в акустике // Акустический журнал. 1959. Т. 5, No 1. С. 4–13,
12. Лепендин Л.Ф. Акустика. М.: Высшая школа, 1978. 448 с.
13. Лейман В.Г. Адиабатическая теория неустойчивости электронного потока в скрещенных полях // Электронная техника. Сер. Электроника СВЧ. 1968, No 8. С. 26–34.
14. Лейман В.Г. Об устойчивости системы параллельных электронных потоков, фокусируемых магнитным полем // Электронная техника. Сер. Электроника СВЧ. 1967. No 8. С. 15–26.
15. Хокни Р. Методы расчета потенциала и их приложения // В кн.: Вычислитель- ные методы в физике плазмы. М.: Мир, 1974. С. 143–212.
16. Кузнецов С.П. Турбулентное движение электронного потока в скрещенных по- лях // ЖТФ. 1977. Т. 47, No 12. С. 2483–2487.
17. Lighthill M.J. On sound generated aerodynamically. I. General theory // Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society. 1952. Vol. 211, No 1107. P. 564–587.
18. Lighthill M.J. On sound generated aerodynamically. II. Turbulence as a source of sound // Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society. 1954. Vol. 222, No 1148. P. 1–32.
19. Рабинович М.И., Трубецков Д.И. Введение в теорию колебаний и волн. М.: Наука, 1984. 432 с.
20. Кузнецов А.П., Кузнецов С.П. О характере неустойчивости в ЛБВ вблизи границы полосы пропускания // Известия вузов. Радиофизика. 1980. Т. 23, No 9. С. 1104–1112.
21. Кузнецов А.П. Смена характера неустойчивости в системе двух слабо связанных волн // Письма в ЖТФ. 1982. Т. 8, No 15. С. 941–944.
22. Hung D.M.H. et al. Absolute instability near the band edge of traveling-wave amplifiers // Physical Review Letters. 2015. Vol. 115. No 12. P. 124801.
23. Гуань-дин-хуа. К теории возбуждения поверхностных звуковых волн // Акустический журнал. 1961. Т. 7, No 2. С. 181–184.
24. Meyer E. Neuere analogien zwischen akustishcen und electromagnetchen Schwingungen und Wellenfeldern. 4-th International congress Acoustics. Copengagen. 1963. Vol. 2. P. 139–156.
25. Кузнецов С.П. Об одной форме уравнений возбуждения периодического волновода // Радиотехника и электроника. 1980. Т. 25, No 2. С. 419–421.
26. Руденко О.В., Солуян С.И. Теоретические основы нелинейной акустики. М.: Наука, 1975. С. 10.
27. Вайнштейн Л.А. Электромагнитные волны. М.: Сов. Радио, 1957. 582 с.
28. Стрелков С.П. Введение в теорию колебаний. М.: Наука, 1964. С. 18.
29. Гельфанд И.М. Разложение по собственным функциям уравнения с периодическими коэффициентами // ДАН СССР. 1950. Т. 73, No 1. С. 1117–1120.
30. Гедьфанд И.М. О формулах преобразования Фурье // Математическое просвещение. 1960. Вып. 5. С. 155–159.
31. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. М.: Мир, 1966. Т. 7. С. 250–253.
32. Современная гидродинамика. Успехи и проблемы. М.: Мир, 1984. 501 с.
33. Ландау Л.Д., Лифшиц Е.М. Механика сплошных сред. М.: Гостехиздат, 1954. 795 с.
34. Kambe T. A new formulation of equations of compressible fluids by analogy with Maxwell’s equations // Fluid dynamics research. 2010. Vol. 42. No 5. 055502.
35. Кубанский П.Н. Поведение резонансной системы в потоке // ЖТФ. 1957. Т. 27, No 1. С. 180–188.
36. Yoshikawa S. Underwater organ pipes // J. Acoust. Soc. Jap. (E). 1984. Vol. 5. No 4. P. 211–221.
37. Nelson P.A., Halliwell N.A., Doak P.E. Fluid dynamics of a flow excited resonance, part II: flow acoustic interaction // Journal of Sound and Vibration. 1983. Vol. 91. No 3. P. 375–402.
38. Panton R.L., Miller J.M. Excitation of Helmholtz resonator by a turbulent boundary layer // The Journal of the Acoustical Society of America, 1975. Vol. 58. No 4. P. 800–806.
BibTeX
author = {Александр Петрович Кузнецов and Сергей Петрович Кузнецов and Дмитрий Иванович Трубецков},
title = {АНАЛОГИЯ В ЗАДАЧАХ О ВЗАИМОДЕЙСТВИИ ЭЛЕКТРОННЫХ И ГИДРОДИНАМИЧЕСКИХ ПОТОКОВ С ПОЛЯМИ РЕЗОНАТОРОВ И ПЕРИОДИЧЕСКИХ СТРУКТУР},
year = {2015},
journal = {Известия высших учебных заведений. Прикладная нелинейная динамика},
volume = {23},number = {5},
url = {https://old-andjournal.sgu.ru/ru/articles/analogiya-v-zadachah-o-vzaimodeystvii-elektronnyh-i-gidrodinamicheskih-potokov-s-polyami},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2015-23-5-5-40},pages = {5--40},issn = {0869-6632},
keywords = {электронный поток,гидродинамический поток,вихри,периодические структуры,теория возбуждения.},
abstract = {Уравнения гидродинамики невязкой сжимаемой жидкости преобразованы к виду, удобному для построения самосогласованной теории взаимодействия гидродинамических потоков с полями резонаторов и периодических структур по аналогии с теорией устройств СВЧ электроники со скрещенными электрическим и магнитным статическими полями. В качестве возбуждаемого акустического поля рассматривается поле скоростей, а в качестве источников – завихренность в потоке. Для двумерных задач в пренебрежении нелинейностью собственных акустических колебаний и сжимаемостью жидкости в области движения вихрей получены уравнения возбуждения акустических резонаторов в форме, полностью аналогичной уравнениям возбуждения электродинамических резонаторов. Для трехмерных резонаторов проведено рассмотрение, повторяющее электродинамическую теорию по своей общей структуре, хотя полной аналогии в этом случае не получается. Для иллюстрации решения самосогласованных уравнений рассматривается динамика плоской ленты вихрей, взаимодействующих с периодической структурой типа «гребенки». Решается самосогласованная задача для случая взаимодействия вихревого потока с произвольной периодической структурой. Получено дисперсионное уравнение задачи и на основе его анализа указаны конструкции гидродинамических устройств, являющихся полными аналогами электронных лучевых приборов со скрещенными полями. Скачать полную версию }}