АВТОМОДУЛЯЦИОННЫЕ И ХАОТИЧЕСКИЕ РЕЖИМЫ ГЕНЕРАЦИИ В ДВУХРЕЗОНАТОРНОМ ГИРОКЛИСТРОНЕ С ЗАПАЗДЫВАЮЩЕЙ ОБРАТНОЙ СВЯЗЬЮ∗
Образец для цитирования:
Тема и цель исследования. Исследована динамика двухрезонаторного гироклистрона диапазона 93 ГГц с запаздывающей обратной связью. Проведен сравнительный анализ динамических режимов, получаемых в численном эксперименте как на основе усредненных уравнений, так и в рамках моделирования методом «крупных частиц» с помощью программного комплекса KARAT. Методы. Для выявления динамических свойств, полученных при моделировании режимов, применен спектр статистических методов теории хаоса: расчет фрактальных размерностей, показателей Ляпунова и др. Для нахождения ляпуновских показателей использован способ оценки их по временным рядам. Этот способ крайне удобен, так как требует лишь одной скалярной временной реализации в фиксированной точке пространственно распределенной системы, например, для амплитуды выходного излучения. Кроме того, способ воспроизводит обработку данных, которые могут быть получены в натурном эксперименте. Результаты. Анализ полученных при численном моделировании временных рядов показал существование гиперхаотических режимов генерации для обоих подходов к моделированию гироклистрона. Таким режимам отвечают аттракторы с высокой корреляционной размерностью и более чем одним положительным ляпуновским показателем. Обнаружено, что указанные гиперхаотические режимы возникают, например, с увеличением коэффициента передачи для цепи обратной связи. Многомодовый «сильный» гиперхаос развивается из хаоса, возникающего в результате последовательности бифуркаций удвоения периода регулярной автомодуляции интенсивности выходного излучения гироклистрона. Обсуждение.Хаотические генераторы и шумотроны СВЧ диапазона крайне ценны для различных технических приложений, например, в радиолокации и широкополосной коммуникации. В связи с этим, получение многомодовых, хаотических и гиперхаотических режимов генерации гироусилителей является приоритетным направлением СВЧ электроники. Предложенные в работе методы моделирования демонстрируют сложные режимы для гироклистрона. Описанные подходы к анализу генераций усилителя могут быть в будущем применены в натурном эксперименте.
1. Andronov A.A., Flyagin V.A., Gaponov A.V., Gol’denberg A.L., Petelin M.I., Usov V.G., Yulpatov V.K. The gyrotron: High-power source of millimetre and submillimetre waves // Infrared Phys. 1978. Vol. 18, no. 5-6. Pp. 385–393.
2. Nusinovich G.S. Introduction to the Physics of Gyrotrons. Baltimore: J. Hopkins Univ. Press, 2004. 341 p.
3. Thumm M. State-of-the-art of high power gyro-devices and free electron masers. Update 2016 // KIT Scientific Reports. 2017. Band-Nr. 7735.
4. Засыпкин Е.В., Гачев И.Г., Антаков И.И. Экспериментальное исследование гироклистрона с высшим типом колебаний TE021 в резонаторах в коротковолновой части миллиметрового диапазона // Изв. вузов. Радиофизика. 2012. Т. 55, No 5. С. 341–350.
5. Зайцев Н.И., Гвоздев А.К., Запевалов С.А., Кузиков С.В., Мануилов В.Н., Моисеев М.А., Плоткин М.Е. Экспериментальное исследование мультимегаваттного импульсного гироклистрона // Радиотехника и электроника. 2014. Т. 59, No 2.
С. 179–183.
6. Зайцев Н.И., Абубакиров Э.Б., Гузнов Ю.М., Денисов Г.Г., Завольский Н.А., Запевалов В.Е., Запевалов С.А., Планкин О.П., Розенталь Р.М., Седов А С., Семенов Е.С., Чирков А.В., Шевченко А.С. Разработка компонентов релятивистского гироклистрона 3-мм диапазона // Материалы 25-й международной Крымской конференции «СВЧ-техника и телекоммуникационные технологии» (КрыМиКо 2015). Севастополь, 6–12 сентября 2015. С. 781–782.
7. Swati M.V., Chauhan M.S., Jain P.K. Design methodology and beam-wave interaction study of a second-harmonic D-band gyroklystron amplifier // IEEE Trans. Plasma Sci. 2016. Vol. 44, no. 11. Pp. 2844–2851.
8. Кузнецов С.П., Перельман А.Ю., Трубецков Д.И. Автомодуляция и стохастические режимы в клистроне бегущей волны с внешней обратной связью // ЖТФ. 1983. Т. 53, No 1. С. 163–166.
9. Гришин С.В., Дмитриев Б.С., Жарков Ю.Д., Скороходов В.Н., Шараевский Ю.П. Генерация хаотических СВЧ-импульсов в кольцевой системе на основе клистронного усилителя мощности и нелинейной линии задержки на магнитостатических волнах // Письма в ЖТФ. 2010. Т. 36, вып. 2. С. 62–69.
10. Emelyanov V.V., Girevoy R.A., Yakovlev A.V., Ryskin N.M. Time-domain particle-in-cell modeling of delayed feedback klystron oscillators // IEEE Trans. Electron. Dev. 2014. Vol. 61, no. 6. Pp. 1842–1847.
11. Ергаков В.С., Моисеев М.А. Двухрезонаторный генератор с запаздывающей обратной связью // Радиотехника и электроника. 1986. Т. 31, вып. 5. С. 962–967.
12. Афанасьева В.В., Лазерсон А.Г. Динамический хаос в двухрезонаторных клистронных автогенераторах с запаздывающей обратной связью // Изв. вузов. Прикладная нелинейная динамика. 1995. Т. 3, No 5. С. 88–99.
13. Ginzburg N.S., Rozental R.M., Sergeev A.S., Zotova I.V. Time-domain model of gyroklystrons with diffraction power input and output // Physics of Plasmas. 2016. Vol. 23. 033108–033112.
14. Zasypkin E.V., Moiseev M.A., Gachev I.G., Antakov I.I. Study of high-power Kaband second-harmonic gyroklystron amplifier // IEEE Trans. Plasma Sci. 1996. Vol. 24, no. 3. Pp. 666–670.
15. Tolkachev A.A., Levitan B.A., Solovjev G.K., Veytsel V.V., Farber V.E. A megawatt power millimeter-wave phased-array radar // IEEE Aerospace and Electronic Systems Magazine. 2000. Vol. 15. Pp. 25–31.
16. Антаков И.И., Гачев И.Г., Засыпкин Е.В. Экспериментальное исследование гироклистрона, работающего в поле постоянного магнита // Изв. вузов. Радиофизика. 2011. Т. 54, No 3. С. 185–194.
17. Ginzburg N.S., Zavolsky N.A., Nusinovich G.S. Theory of non-stationary processes in gyrotrons with low-Q resonators // Int. J. Electron. 1986. Vol. 61. Pp. 881–894.
18. Ginzburg N.S., Sergeev A.S., Zotova I.V. Time-domain self-consistent theory of frequency-locking regimes in gyrotrons with low-Q resonators // Phys. Plasmas. 2015. Vol. 22. 033101–033105.
19. Кац В.А. Возникновение хаоса и его эволюция в распределенном генераторе с запаздыванием (эксперимент) // Изв.вузов. Радиофизика. 1985. Т. 28, No 2. С. 161–176.
20. Устинов А.Б., Кондрашов А.В., Калиникос Б.А. Радиофотонный генератор хаотического и шумового сигналов // Письма в ЖТФ. 2016. Т. 42, No 8. С. 28–36.
21. Власов С.Н., Жислин Г.М., Орлова И.М., Петелин М.И., Рогачева Г.Г. Открытые резонаторы в виде волноводов переменного сечения // Изв.вузов. Радиофизика. 1969. Т. 12, No 8. С. 1236–1244.
22. Рыскин Н.М. Исследование нелинейной динамики ЛБВ-генератора с запаздывающей обратной связью//Изв.вузов. Радиофизика. 2004. Т. 47, No2. С. 129–142.
23. Кузнецов С.П. Сложная динамика генераторов с запаздывающей обратной связью (обзор) // Изв. вузов. Радиофизика. 1982. Т. 25, No 12. С. 1410–1428.
24. Дмитриева Т.В., Рыскин Н.М., Титов В.Н., Шигаев А.М. Сложная динамика простых моделей распределенных электронно-волновых систем // Изв. вузов. Прикладная нелинейная динамика. 1999. Т. 7, No 6. С. 66–81.
25. Тараканов В.П. Универсальный электромагнитный код КАРАТ / в кн.: Математическое Моделирование. Проблемы и Результаты. М.: Наука, 2003. 456 с.
26. Tarakanov V.P. Code KARAT in simulations of power microwave sources including Cherenkov plasma devices, vircators, orotron, E-fieldsensor, calorimeter etc // EPJ Web of Conferences. 2017. Vol. 149. P. 04024.
27. Ергаков В.С., Моисеев М.А. Влияние разброса скоростей электронов на КПД двухрезонаторного МЦР-клистрона // Электронная техника. Серия I. Электроника СВЧ. 1977. No 5. С. 9–15.
28. Ергаков В.С., Моисеев М.А., Эрм Р.Э. Влияние разброса скоростей электронов на характеристики двухрезонаторного МЦР-усилителя // Электронная техника. Серия I. Электроника СВЧ. 1980. No 4. С. 29–37.
29. Засыпкин Е.В., Моисеев М.А. Повышение КПД в гироклистронах с неоднородным статическим магнитным полем // Изв. вузов. Радиофизика. 1994. Т. 37, No 10. С. 1321–1334.
30. Кузнецов С.П., Трубецков Д.И. Хаос и гиперхаос в лампе обратной волны // Изв. вузов. Радиофизика. 2004. Т. 47, No 5–6. С. 383–398.
31. Bezruchko B.P., Smirnov D.A. Extracting Knowledge from Time Series. An Introduction to Nonlinear Empirical Modeling. Heidelberg–Dordrecht–London–New York: Springer, 2010. 420 p.
32. Bradley E., Kantz H. Nonlinear time-series analysis revisited // Chaos. 2015. Vol. 25. 097610–097619.
33. Ляпунов А.М. Общая задача об устойчивости движения. М.-Л.: ГИТТЛ, 1950. 472 с.
34. Eckmann J.-P., Ruelle D. Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems//Physica D. 1992. Vol. 56. Pp. 185–187.
35. Безручко Б.П., Булгакова Л.В., Кузнецов С.П., Трубецков Д.И. Стохастические автоколебания и неустойчивость в лампе обратной волны // Радиотехника и электроника. 1983. Т. 28, No 6. С. 1136–1139.
36. Кузнецов С.П., Трубецков Д.И. Хаос и гиперхаос в лампе обратной волны // Изв. вузов. Радиофизика. 2004. Т. 47, No 5. С. 1–17.
37. Блохина Е.В., Рожнев А.Г. Хаос и гиперхаос в гиротроне // Изв. вузов. Радиофизика. 2006. Т. 49, No 10. С. 887–899.
38. Blokhina E.V., Kuznetsov S.P., Rozhnev A.G. High-dimensional chaos in a gyrotron // IEEE Trans. Electron. Dev. 2007. Vol. 54, no. 2. Pp. 188–193.
39. Балякин А.А., Рыскин Н.М. Особенности расчета спектров показателей Ляпунова в распределенных автоколебательных системах с запаздывающей обратной связью // Изв. вузов. Прикладная нелинейная динамика. 2007. Т. 15, No 6. С. 3–21.
40. Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them. Part 1: Theory // Meccanica. 1980. Vol. 15. Pp. 9–20.
41. Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them. Part 2: Numerical application // Meccanica. 1980. Vol. 15. Pp. 21–30.
42. Wolf A., J.Swift B., Swinney H.L., Vastano J.A. Determining Lyapunov exponents from a time series // Physica D. 1985. Vol. 16. Pp. 285–317.
43. Eckmann J.-P., Kamphorst S.O., Ruelle D., Gilberto D. Lyapunov exponents from a time series // Phys. Rev. A. 1986. Vol. 34. Pp. 4971–4979.
44. Brown R., Bryant P., Abarbanel H.D.I. Computing the Lyapunov spectrum of a dynamical system from an observed time series // Phys. Rev. A. 1991. Vol. 43. Pp. 2787–2806.
45. Sano M., Sawada Y. Measurement of the Lyapunov spectrum from a chaotic time series // Phys. Rev. Lett. 1985. Vol. 55. Pp. 1082–1085.
46. Zeng X., Eykholt R., Pielke R.A. Estimating the Lyapunov exponent spectrum from short time series of low precision // Phys. Rev. Lett. 1991. Vol. 66. Pp. 3229–3232.
47. Rozental R.M., Isaeva O.B., Ginzburg N.S., Zotova I.V., Sergeev A.S., Rozhnev A.G. Characteristics of chaotic regimes in a space-distributed gyroklystron model with delayed feedback // Rus. J. Nonlin. Dyn. 2018. No. 2. (in press).
48. Гинзбург Н.С., Розенталь Р.М., Сергеев А.С., Зотова И.В. Генерация хаотических сигналов миллиметрового диапазона на основе широкополосных гироусилителей с винтовым гофрированным волноводом // Письма в ЖТФ. 2017. Т. 43, вып. 3. С. 50–56.
49. Frolov N.S., Kurkin S.A., Koronovskii A.A., Hramov A.E. Nonlinear dynamics and bifurcation mechanisms in intense electron beam with virtual cathode // Phys. Lett. A. 2017. Vol. 381, no. 28. Pp. 2250–2255.
50. Розенталь Р.М., Гинзбург Н.С., Сергеев А.С., Зотова И.В., Федотов А.Э., Тараканов В.П. Генерация широкополосного хаотического излучения в гиротронах в режиме перекрытия высокочастотного и низкочастотного резонансов // ЖТФ. 2017. Т. 87, вып. 10. С. 1555–1561.
BibTeX
author = {Роман Маркович Розенталь and Ольга Борисовна Исаева and Наум Самуилович Гинзбург and Ирина Валерьевна Зотова and Андрей Георгиевич Рожнев and Владимир Павлович Тараканов and Александр Сергеевич Сергеев},
title = {АВТОМОДУЛЯЦИОННЫЕ И ХАОТИЧЕСКИЕ РЕЖИМЫ ГЕНЕРАЦИИ В ДВУХРЕЗОНАТОРНОМ ГИРОКЛИСТРОНЕ С ЗАПАЗДЫВАЮЩЕЙ ОБРАТНОЙ СВЯЗЬЮ∗ },
year = {2018},
journal = {Известия высших учебных заведений. Прикладная нелинейная динамика},
volume = {26},number = {3},
url = {https://old-andjournal.sgu.ru/ru/articles/avtomodulyacionnye-i-haoticheskie-rezhimy-generacii-v-dvuhrezonatornom-giroklistrone-s},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2018-26-3-78-98},pages = {78--98},issn = {0869-6632},
keywords = {гироклистрон,запаздывающая обратная связь,развитый хаос},
abstract = {Тема и цель исследования. Исследована динамика двухрезонаторного гироклистрона диапазона 93 ГГц с запаздывающей обратной связью. Проведен сравнительный анализ динамических режимов, получаемых в численном эксперименте как на основе усредненных уравнений, так и в рамках моделирования методом «крупных частиц» с помощью программного комплекса KARAT. Методы. Для выявления динамических свойств, полученных при моделировании режимов, применен спектр статистических методов теории хаоса: расчет фрактальных размерностей, показателей Ляпунова и др. Для нахождения ляпуновских показателей использован способ оценки их по временным рядам. Этот способ крайне удобен, так как требует лишь одной скалярной временной реализации в фиксированной точке пространственно распределенной системы, например, для амплитуды выходного излучения. Кроме того, способ воспроизводит обработку данных, которые могут быть получены в натурном эксперименте. Результаты. Анализ полученных при численном моделировании временных рядов показал существование гиперхаотических режимов генерации для обоих подходов к моделированию гироклистрона. Таким режимам отвечают аттракторы с высокой корреляционной размерностью и более чем одним положительным ляпуновским показателем. Обнаружено, что указанные гиперхаотические режимы возникают, например, с увеличением коэффициента передачи для цепи обратной связи. Многомодовый «сильный» гиперхаос развивается из хаоса, возникающего в результате последовательности бифуркаций удвоения периода регулярной автомодуляции интенсивности выходного излучения гироклистрона. Обсуждение.Хаотические генераторы и шумотроны СВЧ диапазона крайне ценны для различных технических приложений, например, в радиолокации и широкополосной коммуникации. В связи с этим, получение многомодовых, хаотических и гиперхаотических режимов генерации гироусилителей является приоритетным направлением СВЧ электроники. Предложенные в работе методы моделирования демонстрируют сложные режимы для гироклистрона. Описанные подходы к анализу генераций усилителя могут быть в будущем применены в натурном эксперименте. ∗Статья написана по материалам доклада на XVII международной зимней школе-семинаре по радиофизике и электронике СВЧ. Россия, Саратов, 5–10.02.2018 }}