ПРИБЛИЖЕННОЕ ОПИСАНИЕ МНОЖЕСТВА МАНДЕЛЬБРОТА. ТЕРМОДИНАМИЧЕСКАЯ АНАЛОГИЯ
Образец для цитирования:
В работе развита аналогия между приближенным ренормгрупповым анализом каскада удвоений Фейгенбаума, обобщенным на комплексный случай, и фазовыми переходами в соответствии с теорией Ли и Янга (основанной на рассмотрении формально комплексифицированных термодинамических величин). Результаты обобщены на случай других последовательностей усложнения периода, характерных для комплексных аналитических отображений. Показано, что множества Жюлиа преобразований перенормировки являются приближенными версиями множества Мандельброта.
1. Румер Ю.Б., Рывкин М.Ш. Термодинамика, статистическая физика и кинетика. М.: Наука, 1977. 552 с.
2. Синай Я.Г. Теория фазовых переходов: Строгие результаты. М.: Наука, 1980. 208 с.
3. Балеску Р. Равновесная и неравновесная статистическая механика. М.: Мир, 1978. 408 с.
4. Пайтген Х.-О., Рихтер П.Х. Красота фракталов. Образы комплексных динамических систем. М.: Мир, 1993. 176 с.
5. Kadanoff L.P. Scaling laws for Ising models near Tc // Physics. 1966. Vol. 2. P. 263.
6. Wilson K.G. Renormalisation group and critical phenomena // 1. Phys. Rev. B. 1971. Vol. 4. P. 3174; 2. Phys. Rev. B. 1971. Vol. 4. P. 3184.
7. Feigenbaum M.J. Quantitative universality for a class of non-linear transformations // J. Stat. Phys. 1978. Vol. 19, No 1. P. 25.
8. Feigenbaum M.J. The universal metric properties of non-linear transformations // J. Stat. Phys. 1979. Vol. 21, No 6. P. 669.
9. Шустер Г.Г. Детерминированный хаос. М.: Мир, 1988. 250 с.
10. Хакен Г. Синергетика. М.: Мир, 1980.
11. Кузнецов С.П. Динамический хаос. М.: Физматлит, 2001. 296 с.
12. Кузнецов А.П., Кузнецов С.П. Критическая динамика одномерных отображений: Часть 1. Сценарий Фейгенбаума // Изв. вузов. ПНД. 1993. Т. 1, No 1–2. С. 15.
13. Yang C.N., Lee T.D. Statistical theory of equations of state and phase transitions: 1. Theory of condensation // Phys. Rev. 1952. Vol. 87. P. 404.
14. Lee T.D., Yang C.N. Statistical theory of equations of state and phase transitions: 2. Lattice gas and Ising model // Phys. Rev. 1952. Vol. 87. P. 410.
15. Wood D.W., Turnbull R.W. Numerical experiments on Yang-Lee zeros // J. Phys. A: Math. Gen. 1986. Vol. 19. P. 2611.
16. Derrida B., De Seze L., Itzykson C. Fractal structure of zeros in hierarchical models // J. Stat. Phys. 1983. Vol. 33, No 3. P. 559.
17. Onsager L. Crystal statistics: 1. Two-dimensional model with an order-disorder transition // Phys. Rev. 1944. Vol. 65. P. 117.
18. Wim van Saarloos, Kurtze D.A. Location of zeros in the complex temperature plane: Absence of Lee-Yang theorem // J. Phys. A: Math. Gen. 1984. Vol. 17. P. 1301.
19. Ananikian N.S., Ghulghazaryan R.G. Yang-Lee and Fisher zeros of multisite interaction Ising models on the Cayley-type lattices // Phys. Lett. A. 2000. Vol. 277. P. 249.
20. Ananikian N.S., Izmailian N.Sh., Oganessyan K.A. An Ising spin-S model on generalized recursive lattice // Physica A. 1998. Vol. 254.P. 207.
21. Ananikian N.S., Dallakian S.K., Hu B., Izmailian N.Sh., Oganessyan K.A. Chaos in Z(2) gauge model on a generalized Bethe lattice of plaquettes // Phys. Lett. A. 1998. Vol. 248. P. 381.
22. Ananikian N.S., Dallakian S.K. Multifractal approach to three-site antiferromagnetic Ising model // Physica D. 1997. Vol. 107. P. 75.
23. Akheyan A.Z., Ananikian N.S. Global Rethe lattice consideration of the spin-1 Ising model // J. Phys. A: Math. Gen. 1996. Vol. 29. P. 721.
24. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986. 736 с.
25. Кроновер Р.М. Фракталы и хаос в динамических системах. Основы теории. М.: Постмаркет, 2000. 352 с.
26. Cvitanovic P., Myrheim J. ́ Complex universality // Commun. Math. Phys. 1989. Vol. 121. P. 225.
27. Isaeva O.B., Kuznetsov S.P. On scaling properties of two-dimensional maps near the accumulation point of the period-tripling cascade // Regular and Chaotic Dynamics. 2000. Vol. 5, No 4. P. 459.
28. Гольберг А.И., Синай Я.Г., Ханин К.М. Универсальные свойства для последовательностей бифуркаций утроения периода // УМН. 1983. Т. 38, No 1. C. 159.
29. Nauenberg M. Fractal boundary of domain of analyticity of the Feigenbaum function and relation to the Mandelbrot set // J. Stat. Phys. 1987. Vol. 47, No 3–4. P. 459.
30. Buff X. Geometry of the Fiegenbaum map // Conformal Geometry and Dynamics. 1999. Vol. 3. P. 79.
31. Wells A.L.J., Overill R.E. The extension of the Feigenbaum-Cvitanovic function to the complex plane // Int. J. of Bif. and Chaos. 1994. Vol. 4, No 4. P. 1041.
32. Widom M., Bensimon D., Kadanoff L.P. Strange objects in the complex plane // J. Stat. Phys. 1983. Vol. 32, No 3. P. 443.
33. Jensen M.H., Kadanoff L.P., Procaccia I. Scaling structure and thermodynamics of strange sets // Phys. Rev. A. 1987. Vol. 36. P. 1409.
34. Douady A., Hubbard J.H. Iteration des polynomes quadratiques complexes // CRAS Paris 294:123–126 (On the dynamics of polynomial-like mappings. Electronic preprint, 1984)
BibTeX
author = {Ольга Борисовна Исаева and Сергей Петрович Кузнецов},
title = {ПРИБЛИЖЕННОЕ ОПИСАНИЕ МНОЖЕСТВА МАНДЕЛЬБРОТА. ТЕРМОДИНАМИЧЕСКАЯ АНАЛОГИЯ},
year = {2006},
journal = {Известия высших учебных заведений. Прикладная нелинейная динамика},
volume = {14},number = {1},
url = {https://old-andjournal.sgu.ru/ru/articles/priblizhennoe-opisanie-mnozhestva-mandelbrota-termodinamicheskaya-analogiya},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2006-14-1-55-71},pages = {55--71},issn = {0869-6632},
keywords = {-},
abstract = {В работе развита аналогия между приближенным ренормгрупповым анализом каскада удвоений Фейгенбаума, обобщенным на комплексный случай, и фазовыми переходами в соответствии с теорией Ли и Янга (основанной на рассмотрении формально комплексифицированных термодинамических величин). Результаты обобщены на случай других последовательностей усложнения периода, характерных для комплексных аналитических отображений. Показано, что множества Жюлиа преобразований перенормировки являются приближенными версиями множества Мандельброта. }}