СИНХРОНИЗАЦИЯ КОЛЕБАНИЙ В ДИНАМИКЕ АНСАМБЛЕЙ КОРКОВЫХ НЕФРОНОВ
Образец для цитирования:
Путем анализа экспериментальных данных исследуется коллективная динамика ансамблей из нескольких десятков нефронов, расположенных на поверхности почки. На основе вейвлетанализа изучается эффект захвата мгновенных частот и фаз колебаний, обусловленных механизмом канальцевогломерулярной обратной связи. Показано, что в формировании кластеров синхронной динамики участвуют структурные элементы почки, относящиеся к разным нефронным «деревьям», а подстройка частот и фаз колебаний больших групп нефронов наблюдается только на определенных фрагментах экспериментальных записей. Установлено, что значительные группы нефронов, расположенных на разных участках поверхности почки, демонстрируют эффект синфазной синхронизации колебаний.
1. Блехман И.И. Синхронизация в природе и технике. М.: Наука, 1981.
2. Ланда П.С. Автоколебания в системах с конечным числом степеней свободы. М.: Наука, 1980.
3. Рабинович М.И., Трубецков Д.И. Введение в теорию колебаний и волн. М.: Наука, 1984.
4. Анищенко В.С., Вадивасова Т.Е., Астахов В.В. Нелинейная динамика хаотических и стохастических систем. Саратов: Изд-во Саратовского университета, 1999.
5. Пиковский A., Розенблюм М., Куртс Ю. Синхронизация. Фундаментальное нелинейное явление. М.: Техносфера, 2003.
6. Balanov A., Janson N., Postnov D., Sosnovtseva O. Synchronization: From simple to complex. Berlin: Springer-Verlag, 2009.
7. Абарбанель Г.Д.И., Рабинович М.И., Селверстон А., Баженов М.В., Хуэрта Р., Сущик М.М., Рубчинский Л.Л. Синхронизация в нейронных ансамблях // УФН. 1996. Т. 166, No 4. С. 363.
8. Schafer C., Rosenblum M.G., Abel H.-H., Kurths J. ̈ Synchronization in the human cardiorespiratory system // Phys. Rev. E. 1999. Vol. 60. P. 857.
9. Anishchenko V.S., Balanov A.G., Janson N.B., Igosheva N.B., Bordyugov G.V. Entrainment between heart rate and weak noninvasive forcing // Int. Journal of Bifurcation and Chaos. 2000. Vol. 10, No 10. P. 2339.
10. Шмидт Р., Тевс Г. Физиология человека. М.: Мир, 1996.
11. Layton H.E., Pitman E.B., Moore L.C. Limit-cycle oscillations and tubuloglomerular feedback regulation of distal sodium delivery // Am. J. Physiol. Renal Physiol. 2000. Vol. 278. F287.
12. Marsh D.J., Sosnovtseva O.V., Mosekilde E., Holstein-Rathlou N.-H. Vascular coupling induces synchronization, quasiperiodicity, and chaos in a nephron tree // Chaos. 2007. Vol. 17. 015114.
13. Leyssac P.P. Further studies on oscillating tubuloglomerular feedback responses in the rat kidney // Acta Physiol. Scand. 1986. Vol. 126. P. 271.
14. Dilley J.R., Arendshorst W.J. Enhanced tubuloglomerular feedback activity in rats developing spontaneous hypertension» // Am. J. Physiol. Renal Fluid Electrolyte Physiol. 1984. Vol. 247. F672.
15. Holstein-Rathlou N.-H., He J., Wagner A.J., Marsh D.J. Patterns of blood pressure variability in normotensive and hypertensive rats // Am. J. Physiol. Regul. Integr. Comp. Physiol. 1995. Vol. 269. R1230.
16. Holstein-Rathlou N.-H., Leyssac P.P. TGF-mediated oscillations in the proximal intratubular pressure: differences between spontaneously hypertensive rats and Wistar-Kyoto rats // Acta Physiol. Scand. 1986. Vol. 126. P. 333.
17. Yip K.-P., Holstein-Rathlou N.-H., Marsh D.J. Chaos in blood flow control in genetic and renovascular hypertensive rats // Am. J. Physiol. Renal Fluid Electrolyte Physiol. 1991. Vol. 261. F400.
18. Yip K.-P., Marsh D.J., Holstein-Rathlou N.-H. Low dimensional chaos in renal blood flow control in genetic and experimental hypertension // Physica D. 1995. Vol. 80. P. 95.
19. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Holstein-Rathlou N.-H. Bimodal oscillations in nephron autoregulation // Phys. Rev. E. 2002. Vol. 66. 061909.
20. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Yip K.-P., Holstein-Rathlou N.-H., Marsh D.J. Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats // Am. J. Physiol. Renal Physiol. 2007. Vol. 293. F1545.
21. Павлова О.Н., Павлов А.Н., Сосновцева О.В. Динамика малых групп взаимодействующих нефронов в норме и при почечной гипертонии // Известия вузов. Прикладная нелинейная динамика. 2010. Т. 18, No 6. С. 3.
22. Fercher A.F., Briers J.D. Flow visualization by means of single-exposure speckle photography // Opt. Commun. 1981. Vol. 37. P. 326.
23. Briers J.D., Webster S. Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow // J. Biomed. Opt. 1996. Vol. 1. P. 174.
24. Frerichs K.U., Feuerstein G.Z. Laser Doppler flowmetry: a review of its application for measuring cerebral and spinal cord blood flow // Mol. Chem. Neuropathol. 1990. Vol. 12. P. 55.
25. Zimnyakov D.A., Briers J.D., Tuchin V.V. Speckle technologies for monitoring and imaging of tissues and tissuelike phantoms // Handbook of Optical Biomedical Diagnostics PM107 / Ed. by V.V. Tuchin. Bellingham, WA: SPIE Press, 2002. P. 987.
26. Zimnyakov D.A., Tuchin V.V. Laser tomography // Medical Applications of Lasers / Ed. by D.R. Vij and K. Mahesh. Boston, MA: Kluwer, 2002. P. 147.
27. Yaoeda K., Shirakashi M., Funaki S., Funaki H., Nakatsue T., Abe H. Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry // Am. J. Ophthalmol. 2000. Vol. 129. P. 734.
28. Dunn A.K., Bolay H., Moskowitz M.A., Boas D.A. Dynamic imaging of cerebral blood flow using laser speckle // Cereb. Blood Flow Metab. 2001. Vol. 21. P. 195.
29. Mallat S.G. A wavelet tour of signal processing. New York: Academic Press, 1998.
30. Addison P.S. The illustrated wavelet transform handbook: applications in science, engineering, medicine and finance. Philadelphia: IOP Publishing, 2002.
31. Kaiser G. A friendly guide to wavelets. Boston: Birkhauser, 1994. ̈
32. Короновский А.А., Храмов А.Е. Непрерывный вейвлетный анализ и его приложения. М.: Физматлит, 2003.
33. Pavlov A.N., Makarov V.A., Mosekilde E., Sosnovtseva O.V. Application of waveletbased tools to study the dynamics of biological processes // Briefings in Bioinformatics. 2006. Vol. 7. P. 375.
34. Павлов А.Н., Павлова О.Н., Сосновцева О.В. Взаимодействие ритмов в динамике структурных элементов почек // Известия вузов. Прикладная нелинейная динамика. 2007. Т. 15, No 2. С. 14.
35. Павлов А.Н., Сосновцева О.В., Анисимов А.А., Павлова О.Н. Динамика почечного кровотока на микро и макроскопическом уровнях // Известия вузов. Прикладная нелинейная динамика. 2008. Т. 16, No 1. С. 3.
BibTeX
author = {Ольга Николаевна Павлова and Алексей Николаевич Павлов and Алексей Александрович Анисимов and Алексей Игоревич Назимов and Ольга Владимировна Сосновцева },
title = {СИНХРОНИЗАЦИЯ КОЛЕБАНИЙ В ДИНАМИКЕ АНСАМБЛЕЙ КОРКОВЫХ НЕФРОНОВ},
year = {2011},
journal = {Известия высших учебных заведений. Прикладная нелинейная динамика},
volume = {19},number = {1},
url = {https://old-andjournal.sgu.ru/ru/articles/sinhronizaciya-kolebaniy-v-dinamike-ansambley-korkovyh-nefronov},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2011-19-1-14-24},pages = {14--24},issn = {0869-6632},
keywords = {Нефроны,авторегуляция кровотока,вейвлетанализ,синхронизация.},
abstract = {Путем анализа экспериментальных данных исследуется коллективная динамика ансамблей из нескольких десятков нефронов, расположенных на поверхности почки. На основе вейвлетанализа изучается эффект захвата мгновенных частот и фаз колебаний, обусловленных механизмом канальцевогломерулярной обратной связи. Показано, что в формировании кластеров синхронной динамики участвуют структурные элементы почки, относящиеся к разным нефронным «деревьям», а подстройка частот и фаз колебаний больших групп нефронов наблюдается только на определенных фрагментах экспериментальных записей. Установлено, что значительные группы нефронов, расположенных на разных участках поверхности почки, демонстрируют эффект синфазной синхронизации колебаний. }}