СИСТЕМА ИТЕРАТИВНЫХ ФУНКЦИЙ И МАРКОВСКИЙ ПРОГНОЗ ВРЕМЕННЫХ РЯДОВ
Образец для цитирования:
В статье изложена методика вероятностного прогноза временных рядов на основе системы случайных итеративных функций из теории фракталов. Итерации приводят к аттрактору (фракталу) в пространстве компактов. Аттрактор является носителем инвариантной вероятностной меры (мультифрактала) в пространстве борелевых мер. Обратная задача состоит в нахождении системы итеративных функций и их вероятностей по оценкам эмпирической меры. Такие оценки можно получить из временного ряда, используя методы символической динамики. Кроме необходимых математических сведений, мы приводим пример практического предсказания пороговых значений геомагнитных возмущений.
1. Noakes L. The Takens embedding theorem // Inter. J. Bifurcation and Chaos. 1991. Vol. 1. P. 867.
2. Sauer T., Yorke J.A., Casdagli M. Embedology // J. Statist. Phys.1991. Vol. 65. P. 579.
3. Афраймович В.С., Рейман А.М. Размерности и энтропии в многомерных системах //Нелинейные волны. Динамика и эволюция. М.: Наука, 1989. C. 238.
4. Макаренко Н.Г. Реконструкция динамических систем по хаотическим временным рядам // Нелинейные волны’2004. Нижний Новгород, 2004. С. 398.
5. Stark J. Delay reconstruction: dynamics versus statistics // Nonlinear dynamics and statistics /A.I. Mees ed. Birkhauser, 2001. P. 81.
6. Макаренко Н.Г. Эмбедология и нейропрогноз // Лекции по нейроинформатике. Ч. 1. Нейроинформатика–2003. Москва, 2003. C. 86.
7. Poggio T., Girosi F. A theory of networks for approximation and learning // MIT AI Lab. Techn. Rep. 1989. Memo No1140. https://hpds1.mit.edu/bitstream/1721.1/6511/2/AIM-1140.pdf
8. Малинецкий Г.Г., Потапов А.Б. Современные проблемы нелинейной динамики. М.: УРСС, 2002. 358 с.
9. Farmer J.D., Sidorovich J.J. Predicting chaotic time series // Phys. Rev. Lett. 1987. Vol. 59. P. 845.
10. Kantz H., Schreiber Th. Nonlinear time series analysis. Cambridge Univ.Press, 2004. 369 p. 20В случае бинарного алфавита.
11. McSharry P.E. Innovations in consistent nonlinear deterministic prediction. D.Phil. Thesis. University of Oxford, 1999.
12. Nakamura T., Kilminster D., Judd K., Mees A. A comparative study of model selection methods for nonlinear time series // Int. J. of Bifur. and Chaos. 2004. Vol. 14. P. 1129.
13. Mukhin D.N., Feigin A.M.,Loscutov E.M., Molkov Y.I. Modified Bayesian approach for the reconstruction of dynamical systems from time series // Phys.Rev.E. 2006. Vol. 73(3 Pt 2):036211.
14. Kantz H., Ragwitz M. Phase space reconstruction and nonlinear predictions for stationary and nonstationary Markovian processes // Intern. Journal of Bifurcation and Chaos. 2004. Vol. 14, No 6. P. 1935.
15. Froyland G. Extracting dynamical behaviour via Markov models //Nonlinear dynamics and statistics / A.I. Mees ed. Birkhauser, 2001. P. 283.
16. Froyland G. Markov modelling for random dynamical systems. 1998. http://www.maths.unsw.edu.au/froyland
17. Daw C.S., Finney C.E.A., Tracy E.R. A review of symbolic analysis of experimental data // Rev. of Scientific Instruments. 2003. Vol. 74. P. 916.
18. Wanliss J.A., Ahn V.V., Yu Z.G., Watson S. Multifractal modeling of magnetic storms via symbolic dynamics analysis // J. Geopys. Res. 2005. Vol.110. P. AO814.
19. Anh Vo, Lau Ka-Sing, Yu Zu-Gao. Multifractal characterization of complete genomes // J.Phys. A: Math.Gen. 2001. Vol. 34. P. 7127.
20. Tino P. Multifractal properties of Hao’s geometric representations of sequences // Physica A. 2002. Vol. 304(3–4). P. 480.
21. Barnsley M. Fractals everywhere. N.Y.: Academic Press, 1988. 531p.
22. Falconer K. Fractal geometry. Mathematical Foundations and Applications. Wiley, 2003. 337 p.
23. Barnsley M.F., Demko S. Iterated function systems and the global construction of fractals // Proc. Roy. Soc. London A. 1985.Vol. 399. P. 243.
24. Hutchinson J.E. Fractals and self-similarity // Indiana Univ. Math. 1981. Vol. 30. P. 713.
25. Diaconis P. Iterated random function // SIAM Review. 1999. Vol. 41. P. 45. http://www.stat.berkeley.edu/census/511.pdf
26. Vrscay E.R. From fractal image compression to fractal-based methods in mathematics // Fractals in Multimedia /ed. by M.F. Barnsley, D. Saupe and E.R. Vrscay. New York: Springer-Verlag, 2002.
27. Jeffrey H.J. Chaos game representation of gene structure// Nucleic Acids Research. 1990. Vol. 18. P. 2163.
28. Tino P. Spatial representation of symbolic sequences through iterative function systems // IEEE Transactions on Systems, Man, and Cybernetics: Part A: Systems and Humans, 1999. Vol. 29(4). P. 386.
29. Tino P., Dorffner G. Predicting the future of discrete sequences from fractal representations of the past //Machine Learning. 2001. Vol. 45(2). P. 187. http://www.cs.bham.ac.uk/pxt/my.publ.html.
30. Barnsley M.F., Ervin V., Hardin D., Lancaster J. Solution of an inverse problem for fractals and other sets //Proc. Nat. Acad. Sci. USA. 1986. Vol. 83. P. 1975.
31. Iacus St. M., Torre D.L. Approximating distribution functions by iterated function systems// Departemental Working Papers 2002–03, Department of Economics University of Milan Italy. http://ideas.repec.org/e/pla155.html.
32. Hart J.C. Computer display of linear fractal surfaces // Doctor Thesis. University of Illinois at Chicago, 1991. http://graphics.cs.uiuc.edu/jch/papers/diss.pdf.
33. Макаренко Н.Г. Фракталы, мультифрактальные меры и аттаракторы // Нелинейные волны’2002. Нижний Новгород, 2003. С. 381.
34. Макаренко Н.Г. Фракталы, аттракторы, нейронные сети и все такое // Лекции по нейроинформатике. Ч.2. // Нейроинформатика–2002. Москва, 2002. С. 121.
35. Falconer K. Techniques in fractal geometry. Wiley & Sons, 1997. 256 p.
36. Hutchinson J.E. Measure Theory. 1995. http://wwwmaths.anu.edu.au/
37. Rubner Y., Tomasi C., Guibas L.J. The Earth mover’s distance as a metric for image retrieval // Technical Rep. STAN-CS-TN-98-86.
38. Kaijser T. Computing the Kantorovich distance for images // J. Mathematical Imaging and Vision. 1998. Vol. 9. P. 173.
39. Лемешко Б.Ю. Методы оптимизации. Конспект лекций. http://www.ami.nstu.ru/ headrd/
40. Stark J. A neural network to compute the Hutchinson metric in fractal image processing // IEEE Trans. Neural Networks. 1991. Vol 2. P. 156.
41. Wadstromer N. Coding of fractal binary images with contractive set mappings composed of affine transformations // PhD Theses. Linkopings univer. 2001.
42. Ling H., Okada K. EMD-L1: An efficient and robust algorithm for comparing histogram-based descriptors //European Conference on Computer Vision. 2006. http://www.cs.umd.edu/ hbling/main.htm.
43. Forte B., Vrscay E. R. Solving the inverse problem for function/image approximations using iterated function systems. I.Theoretical basis; II. Algorithm and computations // Fractals. 1994. Vol. 2,3. P. 325; P. 346.
44. Handy C.R., Mantica G. Inverse problems in fractal construction: moment method solution // Phys. D. 1990. Vol. 43. P. 17.
45. Abendat S., Demko S., Turchetti G. Local moments and inverse problem for fractal measures // Inverse Problems. 1992. Vol. 8. P. 739.
46. Lutton E., Levy-Vehel J., Cretin G., Glevarec Ph., Roll C. Mixed IFS: Resolution of the inverse problem using genetic programming // Complex Systems. 1995. Vol. 9. P. 375.
47. Заболотная Н.А. Индексы геомагнитной активности. М.: Гидрометиздат, 1977. 39 с.
48. Яновский Б.М. Земной магнетизм. Ленинград: ЛГУ, 1978. 592 с.
49. Пудовкин М.И., Распопов О.М., Клейменова Н.Т. Возмущения электромагнитного поля Земли. Ленинград: ЛГУ, 1976. 247 с.
50. Watanabe Sh., Sagawa E., Ohtaka K., Shimazu H. Prediction of the Dst index from john/lecture_notes.html. solar wind parameters by a neural network method // Earth Planets Space. 2002. Vol. 54. P. 1263.
51. Stepanova M., Antonova E., Troshichev O. Prediction of Dst variations from Polar Cap indices using time-delay neural network // J.Atmosph. and Solar-Terrestrial Phys. 2005. Vol. 67. P. 1658.
52. Strivastava N. A logistic regression model for predicting the occurrence of intense geomagnetic storms //Ann.Geophys. 2005. Vol.23. P.2969.
53. Ahn V.V., Yu Z.G., Wanliss J.A., Watson S.M. Prediction of magnetic storm events using the Dst index // Nonlinear Processes in Geophysics. 2005. Vol. 12. P. 799.
54. Levy Vehel J. Numerical computation of the large deviation multifractal spectrum // URL: http://www-rocq.inria.fr/fractales.
55. Forte B., Vrscay E.R. Theory of generalized fractal transforms. Fractal Image Encoding and Analysis / Edited by Y. Fisher. Heidelberg: Springer Verlag, 1998.http://links.uwaterloo.ca/person.ed.htm solar wind parameters by a neural network method // Earth Planets Space. 2002. Vol. 54. P. 1263.
51. Stepanova M., Antonova E., Troshichev O. Prediction of Dst variations from Polar Cap indices using time-delay neural network // J.Atmosph. and Solar-Terrestrial Phys. 2005. Vol. 67. P. 1658.
52. Strivastava N. A logistic regression model for predicting the occurrence of intense geomagnetic storms //Ann.Geophys. 2005. Vol.23. P.2969.
53. Ahn V.V., Yu Z.G., Wanliss J.A., Watson S.M. Prediction of magnetic storm events using the Dst index // Nonlinear Processes in Geophysics. 2005. Vol. 12. P. 799.
54. Levy Vehel J. Numerical computation of the large deviation multifractal spectrum // URL: http://www-rocq.inria.fr/fractales.
55. Forte B., Vrscay E.R. Theory of generalized fractal transforms. Fractal Image Encoding and Analysis / Edited by Y. Fisher. Heidelberg: Springer Verlag, 1998. http://links.uwaterloo.ca/person.ed.html
BibTeX
author = {Николай Григорьевич Макаренко and Лаиля Митхатовна Каримова and Светлана Адиковна Мухамеджанова and Ирина Сергеевна Князева },
title = {СИСТЕМА ИТЕРАТИВНЫХ ФУНКЦИЙ И МАРКОВСКИЙ ПРОГНОЗ ВРЕМЕННЫХ РЯДОВ},
year = {2006},
journal = {Известия высших учебных заведений. Прикладная нелинейная динамика},
volume = {14},number = {6},
url = {https://old-andjournal.sgu.ru/ru/articles/sistema-iterativnyh-funkciy-i-markovskiy-prognoz-vremennyh-ryadov},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2006-14-6-3-20},pages = {3--20},issn = {0869-6632},
keywords = {-},
abstract = {В статье изложена методика вероятностного прогноза временных рядов на основе системы случайных итеративных функций из теории фракталов. Итерации приводят к аттрактору (фракталу) в пространстве компактов. Аттрактор является носителем инвариантной вероятностной меры (мультифрактала) в пространстве борелевых мер. Обратная задача состоит в нахождении системы итеративных функций и их вероятностей по оценкам эмпирической меры. Такие оценки можно получить из временного ряда, используя методы символической динамики. Кроме необходимых математических сведений, мы приводим пример практического предсказания пороговых значений геомагнитных возмущений. }}