показатель Ляпунова.

МЕТОДИКА И РЕЗУЛЬТАТЫ ЧИСЛЕННОЙ ПРОВЕРКИ ГИПЕРБОЛИЧЕСКОЙ ПРИРОДЫ АТТРАКТОРОВ ДЛЯ РЕДУЦИРОВАННЫХ МОДЕЛЕЙ РАСПРЕДЕЛЕННЫХ СИСТЕМ

Метод проверки гиперболической природы хаотических аттракторов, основанный на анализе статистики распределения углов между подпространствами устойчивых и неустойчивых направлений, применяется к редуцированным конечномерным моделям нескольких распределенных систем, сконструированных на основе модификации уравнений Свифта–Хохенберга и модели брюсселятора, а также к задаче о параметрическом возбуждении стоячих волн модулированным сигналом накачки.

ПРОСТРАНСТВО УПРАВЛЯЮЩИХ ПАРАМЕТРОВ НЕЛИНЕЙНОГО ОСЦИЛЛЯТОРА ПРИ КВАЗИПЕРИОДИЧЕСКОМ ВОЗДЕЙСТВИИ

Экспериментально на примере колебательного контура с полупроводниковым диодом и численно на примере отображений и дифференциальных уравнений исследуются динамика и структура пространства управляющих параметров нелинейного осциллятора при квазипериодическом воздействии. Динамика систем с квазипериодическим воздействием инвариантна по отношению к начальным фазам воздействия, как следствие – плоскость амплитуд воздействия симметрична относительно осей координат.

АВТОНОМНЫЙ ГЕНЕРАТОР КВАЗИПЕРИОДИЧЕСКИХ КОЛЕБАНИЙ

Вводится в рассмотрение простая трехмерная автономная система, в которой реализуются квазипериодические автоколебания, соответствующие аттрактору в виде двумерного тора. Представлены компьютерные иллюстрации квазипериодической динамики: фазовые портреты, спектры Фурье, графики показателей Ляпунова.

О СЦЕНАРИЯХ РАЗРУШЕНИЯ ГИПЕРБОЛИЧЕСКОГО ХАОСА В МОДЕЛЬНЫХ ОТОБРАЖЕНИЯХ НА ТОРЕ С ДИССИПАТИВНЫМ ВОЗМУЩЕНИЕМ

В работе исследуется диссипативная модификация отображения «кот Арнольда», в которой при малых значениях амплитуды введенного возмущения реализуется гиперболический хаос, и в определенном диапазоне имеет место гиперболический хаотический аттрактор с поперечной канторовой структурой, разрушающийся при дальнейшем увеличении амплитуды возмущения.