Показатели Ляпунова

Наследие Александра Михайловича Ляпунова и нелинейная динамика

Цель. Целью работы является изучение научного наследия А.М. Ляпунова с позиций нелинейной физики. Фундаментальной важности вклад Ляпунова определяется не только созданными им методами, которые вошли в основу математического аппарата при изучении нелинейных явлений. Его идеи и введенные им понятия способствовали формированию концепций и принципов нелинейной динамики. Метод.

РАСЧЕТ СТАРШЕГО ПОКАЗАТЕЛЯ ЛЯПУНОВА ХАОТИЧЕСКИХ РЕЖИМОВ КОЛЕБАНИЙ ПО ТОЧЕЧНЫМ ПРОЦЕССАМ ПРИ НАЛИЧИИ ШУМА

Предложена модификация метода расчета старшего показателя Ляпунова хаотических режимов колебаний по точечным процессам при наличии измерительного шума, не влияющего на динамику системы, которая позволяет проводить проверку достоверности вычисляемых динамических характеристик. На примере модели Ресслера в режиме фазо-когерентного хаоса рассмотрены особенности применения данного подхода к точечным процессам моделей «накопление–сброс» и «пересечение порога».

ВЫЧИСЛЕНИЕ ПОКАЗАТЕЛЕЙ ЛЯПУНОВА ДЛЯ РАСПРЕДЕЛЁННЫХ СИСТЕМ: ПРЕИМУЩЕСТВА И НЕДОСТАТКИ РАЗЛИЧНЫХ ЧИСЛЕННЫХ МЕТОДОВ

При вычислении показателей Ляпунова для распределённых систем возникают специфические сложности, обусловленные природой этих систем. В этой статье обсуждается точность разных алгоритмов ортогонализации применительно к возникающим в ходе расчётов плохо обусловленным матрицам большого размера. Также исследуется паразитное возбуждение коротковолновых пространственных гармоник, которое, как было обнаружено, может происходить при использовании для решения уравнений метода конечных разностей и приводит к грубым ошибкам вычисления показателей.

АВТОНОМНЫЕ СИСТЕМЫ С КВАЗИПЕРИОДИЧЕСКОЙ ДИНАМИКОЙ Примеры и свойства: Обзор∗

В данной статье представлен обзор известных в нелинейной динамике малоразмерных моделей, демонстрирующих квазипериодическое поведение. Также представлены новые результаты, относящиеся к анализу многочастотных квазипериодических колебаний для моделей с внешним воздействием и связанных осцилляторов.

 

К ВОПРОСУ О РАСЧЕТЕ СПЕКТРА ПРОСТРАНСТВЕННЫХ ЛЯПУНОВСКИХ ЭКСПОНЕНТ В ПРОСТРАНСТВЕННО-РАСПРЕДЕЛЕННЫХ ПУЧКОВО-ПЛАЗМЕННЫХ СИСТЕМАХ¤

В работе проведен анализ поведения диода Пирса – эталонной пучково-плазменной системы, демонстрирующей хаотическую динамику – с позиций рассмотрения поведения спектра пространственных показателей Ляпунова. Описан метод расчета спектра показателей Ляпунова для пространственно-распределенных систем электронной природы. Рассмотрен как случай автономной динамики системы, так и динамика двух однонаправлено связанных диодов Пирса при установлении режима обобщенной хаотической синхронизации.