Наследие Александра Михайловича Ляпунова и нелинейная динамика


Образец для цитирования:

Цель. Целью работы является изучение научного наследия А.М. Ляпунова с позиций нелинейной физики. Фундаментальной важности вклад Ляпунова определяется не только созданными им методами, которые вошли в основу математического аппарата при изучении нелинейных явлений. Его идеи и введенные им понятия способствовали формированию концепций и принципов нелинейной динамики. Метод. Исследование основано на анализе оригинальных работ Ляпунова с привлечением имеющейся литературы, касающейся его творчества. Результаты. Творчество Ляпунова тесно переплетается с деятельностью А.Пуанкаре, среди многих других фундаментальных достижений которого особое значение имеет качественная теория, составившая концептуальную основу нелинейной динамики. Ляпунов явился ближайшим продолжателем Пуанкаре в области качественной теории. Качественной по своей сути является теория устойчивости Ляпунова, одно из крупнейших достижений математики XIX в. С этих позиций Ляпунов подходит к самой постановке задачи устойчивости, выделяя невозмущенное и возмущенное движение. Он разработал методы решения задач устойчивости, предложив и строго обосновав конкретные алгоритмы. Одной из труднейших проблем математики и механики уже в течение нескольких столетий является проблема фигур равновесия вращающейся жидкости. Она имеет многочисленные приложения, стимулировала появление новых идей и целых направлений исследований. В решение проблемы фигур равновесия Ляпунов вместе с Пуанкаре внес определяющий вклад. Ляпунов подробно и совершенно строго исследовал серии новых фигур равновесия, их бифуркации и устойчивость. При этом он создал новые аналитические методы исследования, в частности, работы Ляпунова и Пуанкаре дали мощный импульс развитию теории нелинейных интегральных уравнений. Важное общенаучное значение имеет дальнейшее развитие результатов Ляпунова. Фундаментальное значение для нелинейной динамики приобрели показатели Ляпунова. В основе их использования лежит мультипликативная эргодическая теорема. Показатели Ляпунова связаны с другой важнейшей величиной, также являющейся мерой хаотичности и неустойчивости – энтропией Колмогорова–Синая. Обсуждение. Введенные Ляпуновым понятия и созданные методы имеют непреходящее значение, они не только составили математический аппарат, но в значительной степени формируют концепции и принципы нелинейной динамики.

 
DOI: 
10.18500/0869-6632-2018-26-4-95-120
УДК: 
51(09)
Статус: 
одобрено к публикации
Краткое содержание (PDF): 

BibTeX

@article{ Mukhin-IzvVUZ_AND-26-4-95,
author = {Равиль Рафкатович Мухин },
title = {Наследие Александра Михайловича Ляпунова и нелинейная динамика},
year = {2018},
journal = {Известия высших учебных заведений. Прикладная нелинейная динамика},
volume = {26},number = {4},
url = {https://old-andjournal.sgu.ru/ru/articles/nasledie-aleksandra-mihaylovicha-lyapunova-i-nelineynaya-dinamika},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2018-26-4-95-120},pages = {95--120},issn = {0869-6632},
keywords = {Нелинейные системы,качественные методы,устойчивость и неустойчивость,фигуры равновесия,бифуркации,Показатели Ляпунова,энтропиия Колмогорова–Синая.},
abstract = {Цель. Целью работы является изучение научного наследия А.М. Ляпунова с позиций нелинейной физики. Фундаментальной важности вклад Ляпунова определяется не только созданными им методами, которые вошли в основу математического аппарата при изучении нелинейных явлений. Его идеи и введенные им понятия способствовали формированию концепций и принципов нелинейной динамики. Метод. Исследование основано на анализе оригинальных работ Ляпунова с привлечением имеющейся литературы, касающейся его творчества. Результаты. Творчество Ляпунова тесно переплетается с деятельностью А.Пуанкаре, среди многих других фундаментальных достижений которого особое значение имеет качественная теория, составившая концептуальную основу нелинейной динамики. Ляпунов явился ближайшим продолжателем Пуанкаре в области качественной теории. Качественной по своей сути является теория устойчивости Ляпунова, одно из крупнейших достижений математики XIX в. С этих позиций Ляпунов подходит к самой постановке задачи устойчивости, выделяя невозмущенное и возмущенное движение. Он разработал методы решения задач устойчивости, предложив и строго обосновав конкретные алгоритмы. Одной из труднейших проблем математики и механики уже в течение нескольких столетий является проблема фигур равновесия вращающейся жидкости. Она имеет многочисленные приложения, стимулировала появление новых идей и целых направлений исследований. В решение проблемы фигур равновесия Ляпунов вместе с Пуанкаре внес определяющий вклад. Ляпунов подробно и совершенно строго исследовал серии новых фигур равновесия, их бифуркации и устойчивость. При этом он создал новые аналитические методы исследования, в частности, работы Ляпунова и Пуанкаре дали мощный импульс развитию теории нелинейных интегральных уравнений. Важное общенаучное значение имеет дальнейшее развитие результатов Ляпунова. Фундаментальное значение для нелинейной динамики приобрели показатели Ляпунова. В основе их использования лежит мультипликативная эргодическая теорема. Показатели Ляпунова связаны с другой важнейшей величиной, также являющейся мерой хаотичности и неустойчивости – энтропией Колмогорова–Синая. Обсуждение. Введенные Ляпуновым понятия и созданные методы имеют непреходящее значение, они не только составили математический аппарат, но в значительной степени формируют концепции и принципы нелинейной динамики.   }}