Рассматриваются бифуркации в нелинейных системах, испытывающих воздействие слабого шума. Описаны случаи локальных бифуркаций: «седло-узел», транскритическая бифуркация, суперкритическая «вилка», субкритическая «вилка». На основании известного явления роста и насыщения уровня шума по мере приближения к точке бифуркации поставлена обратная задача – по наблюдаемому изменению шума (характер роста, уровень насыщения, плотность распределения) определить положение точки предстоящей бифуркации и ее тип. Предложен алгоритм решения обратной задачи.