DISCRETE BREATHERS AND QUASIBREATHERS IN NONLINEAR MONOATOMIC CHAINS


Cite this article as:

Goncharov P. P., Dzhelauhova G. S., Chechin G. М. DISCRETE BREATHERS AND QUASIBREATHERS IN NONLINEAR MONOATOMIC CHAINS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2007, vol. 15, iss. 6, pp. 57-74. DOI: https://doi.org/10.18500/0869-6632-2007-15-6-57-74


We study the stability of the symmetric and antisymmetric discrete breathers in the monoatomic chain described by potential energy which is a uniform function of the fourth order. It is shown that the change of the stability properties of these two dynamical objects (known as Sievers-Takeno and Page modes, respectively) takes place at the same strength of the inter-site interactions with respect to the on-site interactions. We also present a new method (the «pair synchronization» method) for the discrete breather construction in the arbitrary nonlinear Hamiltonian lattices. This method possesses an explicit physical sense. Its application technique is demonstrated with the chain of linear coupled Duffing oscillators. The concept of quasibreathers which represent the dynamical objects corresponded to small deviations from the exact breather solutions is briefly discussed.

Key words: 
-
DOI: 
10.18500/0869-6632-2007-15-6-57-74
Literature

1. Aubry S. Breathers in nonlinear lattices: existence, linear stability and quantization // Physica D. 1997. Vol. 103. P. 201.

2. Flach S. and Willis C. R. Discrete breathers // Phys. Rep. 1998. Vol. 295. P. 181.

3. Sievers A.J., Takeno S. Intrinsic localized modes in anharmonic crystals // Phys. Lett. 1988. Vol. 61. P. 970.

4. Aubry S. Discrete breathers: localization and transfer of energy in discrete Hamiltonian nonlinear systems // Physica D. 2006. Vol. 216. P. 1.

5. Flach S. Computational studies of discrete breathers // Energy Localization and Transfer / Eds. T. Dauxois, A. Litvak-Hinenzon, R. MacKay and A. Spanoudaki. World Scientific, 2004. P. 1.

6. Tsironis G.P. If «discrete breathers» is the answer, what is the question? // Chaos. 2003. Vol. 13. P. 657.

7. Sato M., Hubbard B.E., Sievers A.T. Nonlinear energy localization and its manipulation in micromechanical oscillator arrays // Rev. Mod. Phys. 2006. Vol. 78. P. 13.

8. Chechin G.M., Dzhelauhova G.S., and Mehonoshina E.A. Quasibreathers as a gene-72 ralization of the concept of discrete breathers // Phys. Rev. E. 2006. Vol. 74.P. 36608.

9. MacKay R.S. and Aubry S. Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators // Nonlinearity. 1994. Vol. 7. P. 1623.

10. Flach S. Conditions on the existence of localized excitations in nonlinear discrete systems // Phys. Rev. E. 1994. Vol. 50. P. 3134.

11. Marin J.L. and Aubry S. Breathers in nonlinear lattices: numerical calculation from the anticontinuous limit // Nonlinearity. 1996. Vol. 9. P. 1501.

12. Rosenberg R.M. On nonlinear vibrations of systems with many degrees of freedom // Adv. Appl. Mech. 1966. Vol. 9. P. 155.

13. Kivshar Yu.S. Intrinsic localized modes as solitons with a compact support // Phys. Rev. E. 1993. Vol. 48. P. R43.

14. Gorbach A.V. and Flach S. Compactlike discrete breathers in systems with nonlinear and nonlocal dispersive terms // Phys. Rev. E. 2005. Vol. 72. P. 56607.

15. Маневич Л.Н., Михлин Ю.В., Пилипчук В.Н. Метод нормальных колебаний для существенно нелинейных систем. М.: Наука, 1989. 216 с.

16. Vakakis A.F., Manevich L.I., Mikhlin Yu.V., Pilipchuk V.K., Zevin A.A. Normal modes and localization in nonlinear systems. New York: Wiley, 1996.

17. Сахненко В.П., Чечин Г.М. Симметрийные правила отбора в нелинейной динамике атомных систем // ДАН. 1993. Т. 330. С. 308.

18. Chechin G.M. and Sakhnenko V.P. Interactions between normal modes in nonlinear dynamical systems with discrete symmetry. Exact results // Physica D. 1998. Vol. 117. P. 43.

19. Chechin G.M., Ryabov D.S., Zhukov K.G. Stability of low dimensional bushes of vibrational modes in the Fermi–Pasta–Ulam chains // Physica D. 2005. Vol. 203. P. 121.

20. Chechin G.M., Zhukov K.G. Stability analysis of dynamical regimes in nonlinear systems with discrete symmetries // Phys. Rev. E. 2006. Vol. 73. P. 36216.

21. Chechin G.M., Novikova N.V., Abramenko A.A. Bushes of vibrational modes for Fermi–Pasta–Ulam chains // Physica D. 2002. Vol. 166. P. 208.

22. Уиттекер Э.Т., Ватсон Дж.Н. Курс современного анализа. В 2-х частях. Ч. 2: Трансцендентные функции. Пер. с англ. М.: 1963. 516 с.

23. Rossler T., Page J.B. Optical creation of vibrational intrinsic localized modes in anharmonic lattices with realistic interatomic potentials // Phys. Rev. B. 2000. Vol. 62. P. 11460.

24. Cretegny T., Dauxois T., Ruffo S., Torcini A. Localization and equipartion of energy in the b-FPU chain: Chaotic breathers // Physica D. 1998. Vol. 121. P. 109.

25. James G. Existence of breathers on FPU lattices // C.R. Acad. Sci. Paris. 2001. T. 332, Ser. 1. P. 581.

 

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Гончаров-IzvVUZ_AND-15-6-57,
author = {P. P. Goncharov and G. S. Dzhelauhova and G М. Chechin},
title = {DISCRETE BREATHERS AND QUASIBREATHERS IN NONLINEAR MONOATOMIC CHAINS},
year = {2007},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {15},number = {6},
url = {https://old-andjournal.sgu.ru/en/articles/discrete-breathers-and-quasibreathers-in-nonlinear-monoatomic-chains},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2007-15-6-57-74},pages = {57--74},issn = {0869-6632},
keywords = {-},
abstract = {We study the stability of the symmetric and antisymmetric discrete breathers in the monoatomic chain described by potential energy which is a uniform function of the fourth order. It is shown that the change of the stability properties of these two dynamical objects (known as Sievers-Takeno and Page modes, respectively) takes place at the same strength of the inter-site interactions with respect to the on-site interactions. We also present a new method (the «pair synchronization» method) for the discrete breather construction in the arbitrary nonlinear Hamiltonian lattices. This method possesses an explicit physical sense. Its application technique is demonstrated with the chain of linear coupled Duffing oscillators. The concept of quasibreathers which represent the dynamical objects corresponded to small deviations from the exact breather solutions is briefly discussed. }}