EFFECT OF NOISE ON GENERALIZED SYNCHRONIZATION OF SPATIALLY EXTENDED SYSTEMS DESCRIBED BY GINZBURG–LANDAU EQUATIONS
Cite this article as:
Koronovskii A. A., Moskalenko О. I., Hramov A. E. EFFECT OF NOISE ON GENERALIZED SYNCHRONIZATION OF SPATIALLY EXTENDED SYSTEMS DESCRIBED BY GINZBURG–LANDAU EQUATIONS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 4, pp. 3-11. DOI: https://doi.org/10.18500/0869-6632-2011-19-4-3-11
Effect of noise on generalized synchronization in spatially extended systems described by Ginzburg–Landau equations being in the spatio-temporal chaotic regime is studied. It is shown, that noise does not affect the synchronous regime threshold in such systems. The reasons of the revealed particularity have been explained by means of the modified system approach and confirmed by the results of numerical simulation.
1. Boccaletti S., Kurths J., Osipov G.V., Valladares D.L., and Zhou C.S. The synchronization of chaotic systems // Physics Reports. 2002. Vol. 366. P. 1.
2. Glass L. Synchronization and rhythmic processes in physiology// Nature (London). 2001. Vol. 410. P. 277.
3. Prokhorov M.D., Ponomarenko V.I., Gridnev V.I., Bodrov M.B., and Bespyatov A.B. Synchronization between main rhytmic processes in the human cardiovascular system // Phys. Rev. E. 2003. Vol. 68. P. 041913.
4. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Yip K.P., Holstein-Rathlou N.H., and Marsh D.J. Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats // American Journal of Physiology (Renal Physiology). 2007. Vol. 293. P. F1545.
5. Короновский А.А., Москаленко О.И., Храмов А.Е. О применении хаотической синхронизации для скрытой передачи информации // Успехи физических наук. 2009. Т. 179, No 12. С. 1281.
6. Heagy J.F., Carroll T.L., and Pecora L.M. Desynchronization by periodic orbits // Physical Review E. 1995. Vol. 52, No 2. P. R1253.
7. Gauthier D.J. and Bienfang J.C. Intermittent loss of synchronization in coupled chaotic oscillators: Toward a new criterion for high-quality synchronization // Physical Review Letters. 1996. Vol. 77, No 9. P. 1751.
8. Zhu L., Raghu A., and Lai Y.C. Experimental observation of superpersistent chaotic transients // Phys. Rev. Lett. 2001. Vol. 86, No 18. P. 4017.
9. Zhou C.S., Kurths J., Kiss I.Z., and Hudson J.L. Noise-enhanced phase synchronization of chaotic oscillators // Phys. Rev. Lett. 2002. Vol. 89, No 1. P. 014101.
10. Kim S.Y., Lim W., Jalnine A., and Kuznetsov S.P. Characterization of the noise effect on weak synchronization // Phys. Rev. E. 2003. Vol. 67, No 1. P. 016217.
11. Zhou C.S., Kurths J., Allaria E., Boccaletti S., Meucci R., and Arecchi F.T. Noise–enhanced synchronization of homoclinic chaos in a CO2 laser // Phys. Rev. E. 2003. Vol. 67. P. 015205(R).
12. Goldobin D.S. and Pikovsky A.S. Synchronization and desynchronization of self-sustained oscillators by common noise // Phys. Rev. E. 2005. Vol. 71, No 4. P. 045201(R).
13. Guan S., Lai Y.C., and Lai C.H. Effect of noise on generalized chaotic synchronization // Phys. Rev. E. 2006. Vol. 73. P. 046210.
14. Москаленко О.И., Овчинников А.А. Исследование влияния шума на обобщенную хаотическую синхронизацию в диссипативно связанных динамических системах: устойчивость синхронного режима по отношению к внешним шумам и возможные практические приложения // Радиотехника и электроника. 2010. Т. 55, No 4. С. 436.
15. Maritan A. and Banavar J.R. Chaos, noise and synchronization // Phys. Rev. Lett. 1994. Vol. 72, No 10. P. 1451.
16. Toral R., Mirasso C.R., Hernandez-Garsia E., and Piro O. ́ Analytical and numerical studies of noise–induced synchronization of chaotic systems // Chaos. 2001. Vol. 11, No 3. P. 665.
17. Попов П.В., Филатов Р.А., Короновский А.А., Храмов А.Е. Синхронизация пространственно-временного хаоса в пучково-плазменных системах со сверх-критическим током // Письма в ЖТФ. 2005. Т. 31, No 6. С. 9.
18. Короновский А.А., Попов П.В., Храмов А.Е. Обобщенная хаотическая синхронизация в связанных уравнениях Гинзбурга–Ландау // ЖЭТФ. 2006. Т. 130, No 4(10). С. 748.
19. Rulkov N.F., Sushchik M.M., Tsimring L.S., and Abarbanel H.D.I. Generalized synchronization of chaos in directionally coupled chaotic systems // Phys. Rev. E. 1995. Т. 51, No 2. С. 980.
20. Pyragas K. Conditiuonal Lyapunov exponents from time series // Phys. Rev. E. 1997. Vol. 56, No 5. P. 5183.
21. Короновский А.А., Москаленко О.И., Фролов Н.С., Храмов А.Е. К вопросу о спектре пространственных ляпуновских показателей нелинейной активной среды, описываемой комплексным уравнением Гинзбурга–Ландау // Письма в ЖТФ. 2010. Т. 36, No 14. С. 19.
22. Abarbanel H.D.I., Rulkov N.F., and Sushchik M.M. Generalized synchronization of chaos: The auxiliary system approach // Phys. Rev. E. 1996. Vol. 53, No 5. P. 4528.
23. Hramov A.E., Koronovskii A.A., and Popov P.V. Generalized synchronization in coupled Ginzburg–Landau equations and mechanisms of its arising // Phys. Rev. E. 2005. Vol. 72, No 3. P. 037201.
24. Garc ́ia-Ojalvo J. and Sancho J.M. Noise in Spatially Extended Systems. New York: Springer, 1999.
25. Hramov A.E., Koronovskii A.A. Generalized synchronization: A modified system approach // Phys. Rev. 2005. E. Vol. 71, No 6. 067201.
26. Короновский А.А., Попов П.В., Храмов А.Е. Обобщенная синхронизация и механизм ее возникновения в связанных автоколебательных средах // Письма в ЖТФ. 2005. Т. 31, No 22. С. 9.
27. Hramov A.E., Koronovskii A.A., and Popov P.V. Incomplete noise-induced synchronization of spatially extended systems // Phys. Rev. E. 2008. Vol. 77, No 2. P. 036215.
28. Короновский А.А., Попов П.В., Храмов А.Е. Индуцированная шумом синхронизация пространственно-временного хаоса в уравнении Гинзбурга–Ландау // ЖЭТФ. 2008. Т. 134, No 5(11). С. 1048.
29. Hramov A.E., Koronovskii A.A., and Moskalenko O.I. Are generalized synchronization and noise-induced synchronization identical types of synchronous behavior of chaotic oscillators? // Phys. Lett. A. 2006. Vol. 354, No 5–6. P. 423.
BibTeX
author = {A. A. Koronovskii and О. I. Moskalenko and A. E. Hramov},
title = {EFFECT OF NOISE ON GENERALIZED SYNCHRONIZATION OF SPATIALLY EXTENDED SYSTEMS DESCRIBED BY GINZBURG–LANDAU EQUATIONS},
year = {2011},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {19},number = {4},
url = {https://old-andjournal.sgu.ru/en/articles/effect-of-noise-on-generalized-synchronization-of-spatially-extended-systems-described-by},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2011-19-4-3-11},pages = {3--11},issn = {0869-6632},
keywords = {Spatially extended systems,Ginzburg–Landau equations,spatio-temporal chaos,generalized synchronization,noise.},
abstract = {Effect of noise on generalized synchronization in spatially extended systems described by Ginzburg–Landau equations being in the spatio-temporal chaotic regime is studied. It is shown, that noise does not affect the synchronous regime threshold in such systems. The reasons of the revealed particularity have been explained by means of the modified system approach and confirmed by the results of numerical simulation. }}