FORMATION OF STATIONARY PATTERNS IN LATTICES OF BISTABLE ELEMENTS WITH TWO TYPES OF NONLINEARITY
Cite this article as:
Kanakov О. I., Shalfeev V. D. FORMATION OF STATIONARY PATTERNS IN LATTICES OF BISTABLE ELEMENTS WITH TWO TYPES OF NONLINEARITY. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 3, pp. 77-89. DOI: https://doi.org/10.18500/0869-6632-2005-13-3-77-89
Laws of pattern formation in lattices of nonlinear-coupled first-order bistable elements with two types of the element nonlinearity are studied and compared. The results are interpreted in terms of the application to edges detection in images. It is shown by the examples considered, that the replacement of the element nonlinearity does not influence significantly the image processing system functionality under certain conditions.
1. Chua L.O., Yang L. Cellular neural networks: Theory //IEEE Trans. Cirquits. Syst. 1988. Vol. 35. P. 1257.
2. Chua L.O., Yang L. Cellular neural networks: Applications //IEEE Trans. Cirquits. Syst. 1988. Vol. 35. P. 1273.
3. Nekorkin V.I., Makarov V.A., Kazantsev V.B., Velarde M.G. Spatial disorder and pattern formation in lattices of coupled bistable elements //Physica D. 1997. Vol. 100. P. 330.
4. Яхно В.Г. Процессы самоорганизации в распределенных нейроподобных системах. Примеры возможных применений //Нейроинформатика 2001. Лекции по нейроинформатике. М.: МИФИ, 2001. С. 103.
5. Chua L., Roska T. Cellular neural networks and visual computing – Foundations and application. Cambridge University Press, 2002.
6. Zou F., Nossek A. Bifurcation and Chaos in Cellular Neural Networks //IEEE Trans. Cirquits. Syst. 1993. Vol. 40, No 3. P. 166.
7. Zou F., Schwarz S., Nossek J.A. Cellular neural networks design using a learning algorithm //Proc. Int. Workshop on Cellular Neural Networks and their Applications CNNA-90. Budapest, 1990. P. 73.
8. Канаков О.И., Шалфеев В.Д. Применение решетки бистабильных элементов с неидентичными характеристиками к задачам обработки изображений //Труды VI научной конференции по радиофизике, посвященной 100-летию со дня рождения М.Т. Греховой 7 мая 2002 /Ред. А.В.Якимов. Н.Новгород, 2002. C. 116.
9. Kanakov O.I., Shalfeev V.D. Influence of the type of nonlinearity of the basic element on pattern formation in a homogeneous CNN //Proc. Symp. Topical Problems of Nonlinear Wave Physics (NWP-2003). Nizhny Novgorod: Institute of Applied Physics RAS, 2003. P. 40.
BibTeX
author = {О. I. Kanakov and V D Shalfeev},
title = {FORMATION OF STATIONARY PATTERNS IN LATTICES OF BISTABLE ELEMENTS WITH TWO TYPES OF NONLINEARITY},
year = {2005},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {13},number = {3},
url = {https://old-andjournal.sgu.ru/en/articles/formation-of-stationary-patterns-in-lattices-of-bistable-elements-with-two-types-of},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2005-13-3-77-89},pages = {77--89},issn = {0869-6632},
keywords = {-},
abstract = {Laws of pattern formation in lattices of nonlinear-coupled first-order bistable elements with two types of the element nonlinearity are studied and compared. The results are interpreted in terms of the application to edges detection in images. It is shown by the examples considered, that the replacement of the element nonlinearity does not influence significantly the image processing system functionality under certain conditions. }}