KINK DYNAMICS IN THE DISCRETE KLEIN–GORDON MODEL WITH ASYMMETRIC POTENTIAL IN THE PRESENCE OF AC DRIVING
Cite this article as:
Suchkov S. V., Dmitriev S. V. KINK DYNAMICS IN THE DISCRETE KLEIN–GORDON MODEL WITH ASYMMETRIC POTENTIAL IN THE PRESENCE OF AC DRIVING. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 4, pp. 121-131. DOI: https://doi.org/10.18500/0869-6632-2010-18-4-121-131
A discrete KleinGordon model with asymmetric potential that supports kinks free of the PeierlsNabarro potential (PNp) is constructed. Ratchet of kink under harmonic AC driving force is investigated in this model numerically and contrasted with the kink ratchet in the conventional discrete model where kinks experience the PNp. We show that the PNpfree kinks exhibit ratchet dynamics very much different from that reported for the conventional lattice kinks which experience PNp. Particularly, we could not observe any significant influence of the discreteness parameter on the acceleration of PNpfree kinks induced by the AC driving. A threshold value of the viscosity coefficient was found where the drift velocity of the kink changes sign.
1. Braun O.M. and Kivshar Y.S. The Frenkel–Kontorova Model: Concepts, Methods, and Applications. Berlin: Springer, 2004.
2. Flach S., Yevtushenko O., and Zolotaryuk Y. Directed current due to broken time-space symmetry // Phys. Rev.Lett. 2000. Vol. 84. 2358.
3. Reimann P. Supersymmetric ratchets // Phys. Rev. Lett. 2001. Vol. 86. 4992.
4. Reimann P. Brownian motors: Noisy transport far from equilibrium // Phys. Rep. 2002. Vol. 361. P. 57.
5. Alberts B., Johnson A., Lewis J., Raff M., Roberts K. and Walker P. Molecular biology of the cell. New York: Garland, 2002.
6. Engelstadter J. Muller’s ratchet and the degeneration of Y chromosomes: A simulation study // Genetics. 2008. Vol. 180. P. 957.
7. Wang H., Oster G. Ratchets, power strokes, and molecular motors // Appl. Phys. A. 2002. Vol. 75. P. 315.
8. Downton M.T., Zuckermann M.J., Craig E.M., Plischke M. and Linke H. Single-polymer Brownian motor: A simulation study // Phys. Rev. E. 2006. Vol. 73. 011909.
9. Molecular motors / Ed. Schliwa M. Weinheim: Wiley-VCH, 2003.
10. Campas O., Kafri Y., Zeldovich K.B., Casademunt J. and Joanny J.-F. Collective dynamics of interacting molecular motors // Phys. Rev. Lett. 2006. Vol. 97. 038101.
11. Trias E., Mazo J.J., Falo F., and Orlando T.P. Depinning of kinks in a Josephson-junction ratchet array // Phys.Rev. E. 2000. Vol. 61. 2257.
12. Marconi V.I. Rocking ratchets in two-dimensional Josephson networks: Collective effects and current reversal// Phys. Rev. Lett. 2007. Vol. 98. 047006.
13. Segall K., Dioguardi A.P., Fernandes N., and Mazo J.J. Experimental observation of fluxon diffusion in Josephson rings // Journal of Low Temperature Physics. 2009. Vol. 154. P. 41.
14. Gorbach A.V., Denisov S., and Flach S. Optical ratchets with discrete cavity solitons // Opt. Lett. 2006. Vol. 31. 1702.
15. Poletti D., Alexander T.J., Ostrovskaya E.A., Li B., and Kivshar Yu.S. Dynamics of matter-wave solitons in a ratchet potential // Phys. Rev. Lett. 2008. Vol. 101. 150403.
16. Perez-Junquera A., Marconi V.I., Kolton A.B., Alvarez-Prado L.M., Souche Y., Alija A., Velez M., Anguita J.V., Alameda J.M., Martin J.I., and Parrondo J.M.R. Crossed-ratchet effects for magnetic domain wall motion // Phys. Rev. Lett. 2008. Vol. 100. 037203.
17. Marchesoni F. Thermal ratchets in 1+1 dimensions // Phys. Rev. Lett. 1996. Vol. 77. 2364.
18. Kivshar Yu.S., Pelinovsky D.E., Cretegny T., and Peyrard M. Internal modes of solitary waves // Phys. Rev. Lett. 1998. Vol. 80. 5032.
19. Willis C.R., Farzaneh M. Soliton ratchets induced by excitation of internal modes // Phys. Rev. E. 2004. Vol. 69. 056612.
20. Salerno M., Quintero N.R. Soliton ratchets // Phys. Rev. E. 2002. Vol. 65. 025602.
21. Morales-Molina L., Mertens F.G., Sanchez A. Inhomogeneous soliton ratchets under two ac forces // Phys. Rev. E. 2006. Vol. 73. 046605.
22. Costantini G., Marchesoni F., Borromeo M. String ratchets: ac driven asymmetric kinks // Phys. Rev. E. 2002. Vol. 65. 051103.
23. Muller P., Mertens F.G., Bishop A.R. Chaotic transport in deterministic sine-Gordon soliton ratchets // Phys. Rev. E. 2009. Vol. 79. 016207.
24. Zamora-Sillero E., Quintero N.R., Mertens F.G. Sine-Gordon ratchets with general periodic, additive, and parametric driving forces // Phys. Rev. E. 2007. Vol. 76. 066601.
25. Quintero N.R., Sanchez-Rey B., Salerno M. Analytical approach to soliton ratchets in asymmetric potentials // Phys. Rev. E. 2005. Vol. 72. 016610.
26. Salerno M., Zolotaryuk Y. Soliton ratchetlike dynamics by ac forces with harmonic mixing // Phys. Rev. E. 2002. Vol. 65. 056603.
27. Zolotaryuk Y., Salerno M. Discrete soliton ratchets driven by biharmonic fields // Phys. Rev. E. 2006. Vol. 73. 066621.
28. Martinez P.J., Chacon R. Disorder induced control of discrete soliton ratchets // Phys. Rev. Lett. 2008. Vol. 100. 144101.
29. Kevrekidis P.G. On a class of discretizations of Hamiltonian nonlinear partial differential equations // Physica D. 2003. Vol. 183. P. 68.
30. Speight J.M. and Ward R.S. Kink dynamics in a novel discrete sine-Gordon system // Nonlinearity. 1994. Vol. 7. P. 475; Speight J.M. A discrete 34 system without Peierls-Nabarro barrier // Nonlinearity. 1997. Vol. 10. P. 1615; Speight J.M. Topological discrete kinks // Nonlinearity. 1999. Vol. 12. 1373.
31. Bender C.M. and Tovbis A. Quasi-exactly solvable quartic potential // J. Math. Phys. 1997. Vol. 38. 3700.
32. Dmitriev S.V., Kevrekidis P.G., and Yoshikawa N. Discrete Klein-Gordon models with static kinks free of the Peierls–Nabarro potential // J. Phys. A. 2005. Vol. 38. 7617.
33. Roy I., Dmitriev S.V., Kevrekidis P.G., and Saxena A. Comparative study of different discretizations of the 34 model // Phys. Rev. E. 2007. Vol. 76. 026601.
34. Cooper F., Khare A., Mihaila, B. and Saxena A. Exact solitary wave solutions for a discrete λ34 field theory in 1+1 dimensions // Phys. Rev. E. 2005. Vol. 72. 036605.
35. Barashenkov I.V., Oxtoby O.F., and Pelinovsky D.E. Translationally invariant discrete kinks from one-dimensional maps // Phys. Rev. E. 2005. Vol. 72. 35602.
36. Dmitriev S.V., Kevrekidis P.G., and Yoshikawa N. Standard nearest neighbor discretizations of Klein-Gordon models cannot preserve both energy and linear momentum // J. Phys. A. 2006. Vol. 39. 7217.
37. Oxtoby O.F., Pelinovsky D.E., and Barashenkov I.V. Travelling kinks in discrete 34 models // Nonlinearity. 2006. Vol. 19. P. 217.
38. Dmitriev S.V., Kevrekidis P.G., Yoshikawa N., and Frantzeskakis D.J. Exact static solutions for discrete 34 models free of the Peierls-Nabarro barrier: Discretized first-integral approach // Phys. Rev. E. 2006. Vol. 74. 046609.
39. Speight J.M. and Zolotaryuk Y. Kinks in dipole chains // Nonlinearity. 2006. Vol. 19. 1365.
40. Dmitriev S.V., Kevrekidis P.G., Khare A., and Saxena A. Exact static solutions to a translationally invariant discrete 34 model // J. Phys. A. 2007. Vol. 40. 6267.
41. Khare A., Dmitriev S.V., and Saxena A. Exact static solutions of a generalized discrete A4 model including short-periodic solutions, arXiv:0710.1460.
BibTeX
author = {S. V. Suchkov and S. V. Dmitriev},
title = {KINK DYNAMICS IN THE DISCRETE KLEIN–GORDON MODEL WITH ASYMMETRIC POTENTIAL IN THE PRESENCE OF AC DRIVING},
year = {2010},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {18},number = {4},
url = {https://old-andjournal.sgu.ru/en/articles/kink-dynamics-in-the-discrete-klein-gordon-model-with-asymmetric-potential-in-the-presence},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2010-18-4-121-131},pages = {121--131},issn = {0869-6632},
keywords = {Discrete model,ratchet,kink,Peierls–Nabarro potential.},
abstract = {A discrete KleinGordon model with asymmetric potential that supports kinks free of the PeierlsNabarro potential (PNp) is constructed. Ratchet of kink under harmonic AC driving force is investigated in this model numerically and contrasted with the kink ratchet in the conventional discrete model where kinks experience the PNp. We show that the PNpfree kinks exhibit ratchet dynamics very much different from that reported for the conventional lattice kinks which experience PNp. Particularly, we could not observe any significant influence of the discreteness parameter on the acceleration of PNpfree kinks induced by the AC driving. A threshold value of the viscosity coefficient was found where the drift velocity of the kink changes sign. }}