SPATIAL-TEMPORAL PATTERNS IN ACTIVE MEDIUM CAUSED BY DIFFUSION INSTABILITY


Cite this article as:

Polezhaev A. A., Borina М. Y. SPATIAL-TEMPORAL PATTERNS IN ACTIVE MEDIUM CAUSED BY DIFFUSION INSTABILITY. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 2, pp. 116-129. DOI: https://doi.org/10.18500/0869-6632-2014-22-2-116-129


The results of investigation of reaction-diffusion type models demonstrating diffusion instability are presented. In particular, in general case the condition for both Turing and wave instabilities are obtained for  three equations of this type with the diagonal diffusion matrix. Qualitative properties of the system, in which bifurcations of each of the two types can take place, are clarified. Investigation of a set of amplitude equations, describing interaction of several modes which became unstable due to the wave bifurcation, is carried out. It is shown that as a result of competition between modes depending on the value of the parameter defining the strength of interaction only two regimes are possible: either quasi one-dimensional travelling waves (there exists only one nonzero mode) or standing waves (all the modes are nonzero). A possible mechanism for the transition from standing waves to traveling waves with a half wavelength, observed in the Belousov–Zhabotinsky reaction dispersed in a water-in-oil aerosol microemulsion, is considered.

DOI: 
10.18500/0869-6632-2014-22-2-116-129
Literature

1. Николис Г., Пригожин И. Самоорганизация в неравновесных системах. М.: Мир, 1979. 512 с.

2. Пригожин И. От существующего к возникающему. М.: Наука, 1985. 327 с.

3. Хакен Г. Синергетика. М.: Мир, 1980. 406 с.

4. Zhabotinsky A.M. A history of chemical oscillations and waves// Chaos. 1991. Vol. 1. P. 379.

5. Fields R.J., Burger M. Oscillations and travelling waves in chemical systems. New York: Wiley, 1985. 681 p.

6. Kapral R., Showalter K. Chemical waves and patterns. Dordrecht: Kluwer, 1995. 524 p.

7. Castets V., Dulos E., Boissonade J., Kepper P.D. Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern// Phys. Rev. Lett. 1990. Vol. 64. P. 2953.

8. Vanag V.K., Epstein I.R. Pattern formation in a tunable medium: The Belousov– Zhabotinsky reaction in an aerosol OT microemulsion // Phys. Rev. Lett. 2001. Vol. 87. 228301.

9. Gong Y., Christini D.J. Antispiral waves in reaction-diffusion systems // Phys. Rev. Lett. 2003. Vol. 90. 088302.

10. Vanag V.K., Epstein I.R. Packet waves in a reaction-diffusion system // Phys. Rev. Lett. 2002. Vol. 88. 088303.

11. Vanag V.K., Epstein I.R. Dash waves in a reaction-diffusion system // Phys. Rev. Lett. 2003. Vol. 90. 098301.

12. Yang L., Berenstein I., Epstein I.R. Segmented waves from a spatiotemporal transverse wave instability // Phys. Rev. Lett. 2005. Vol. 95. 038303.

13. Vanag V.K., Epstein I.R. Resonance-induced oscillons in a reaction-diffusion system // Phys. Rev. E. 2006. Vol. 73. 016201.

14. Ванаг В.К. Волны и динамические структуры в реакционно-диффузионных системах. Реакция Белоусова–Жаботинского в обращенной микроэмульсии // УФН. 2004. Т. 174, No 9. С. 991.

15. Turring A.M. The chemical basis of morphogenesis // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1952. Vol. 237. P. 37.

16. Kaminaga A., Vanag V., Epstein I. Wavelength halving in a transition between standing waves and traveling waves// Phys. Rev. Lett. 2005. Vol. 95. P. 058302.

17. Еленин Е.Г., Куркина Е.С. Диффузионная неустойчивость в трехкомпонентных системах типа «реакция-диффузия». Реакция (NO+CO)/Pt(100) // Изв. вуз. Ма- тематическое моделирование. 1994. Т. 6, No 8. С. 17.

18. Борина М.Ю., Полежаев А.А. Диффузионная неустойчивость в трехкомпонентной модели типа «реакция-диффузия» // Компьютерные исследования и моделирование. 2011. Т. 3, No 2. С. 135.

19. Гантмахер Ф.Р. Теория матриц. М.: Наука, 1967. 576 с.

20. Zhabotinsky A.M., Dolnik M., Epstein I.R., Rovinsky A.B. Spatio-temporal patterns in a reaction-diffusion system with wave instability // J. Chem. Science. 2000. Vol. 55. P. 223.

21. Kuramoto Y. Chemical Oscillations, Waves, and Turbulence. Springer- Verlag, Berlin, 1984. 156 p.

22. Nicolis G. Introduction to nonlinear science. Cambridge University Press, 1995. 254 p.

23. Борина М.Ю., Полежаев А.А. Пространственно-временные структуры в много-мерной активной среде, обусловленные многомодовым взаимодействием вблизи волновой бифуркации // Изв. вуз. Прикладная нелинейная динамика. 2012. Т. 20, No 6. С. 15.

24. Gierer A., Meinhardt H. A theory of biological pattern formation // Kibernetik. 1972. Vol. 12. P. 30.

25. Deane A.E., Knobloch E., Toomre J. Traveling waves and chaos in thermosolutal convection // Phys. Rev. E. 1987. Vol. 36. P. 2862.

26. Boronska K., Tuckerman L.S. Standing and travelling waves in cylindrical Rayleigh–Benard convection // J. Fluid Mech. 2006. Vol. 559. P. 279.

27. Rehberg I., Rasenat S., Fineberg J., de la Torre Juarez M., Steinberg V. Temporal modulation of traveling waves // Phys. Rev. Lett. 1988. Vol. 61. P. 2449.

28. Marts B., Lin A.L. Transition from traveling to standing waves in the 4:1 resonant Belousov–Zhabotinsky reaction // Phys. Rev. Lett. E. 2008. Vol. 77. P. 026211.

29. Борина М.Ю., Полежаев А.А. О механизме переключения стоячей волны в бегущую, сопровождающегося делением длины волны пополам // Компьютерные исследования и моделирование. 2012. Т. 4, No 4. С. 673.

30. Романовский Ю.М., Степанова Н.В., Чернавский Д.С. Математическая биофизика. М.: Наука, 1984. 304 c.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Полежаев-IzvVUZ_AND-22-2-116,
author = {Andrey Aleksandrovich Polezhaev and М. Yu. Borina},
title = {SPATIAL-TEMPORAL PATTERNS IN ACTIVE MEDIUM CAUSED BY DIFFUSION INSTABILITY},
year = {2014},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {22},number = {2},
url = {https://old-andjournal.sgu.ru/en/articles/spatial-temporal-patterns-in-active-medium-caused-by-diffusion-instability},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2014-22-2-116-129},pages = {116--129},issn = {0869-6632},
keywords = {Active medium,diffusion instability,wave bifurcation,amplitude equations.},
abstract = {The results of investigation of reaction-diffusion type models demonstrating diffusion instability are presented. In particular, in general case the condition for both Turing and wave instabilities are obtained for  three equations of this type with the diagonal diffusion matrix. Qualitative properties of the system, in which bifurcations of each of the two types can take place, are clarified. Investigation of a set of amplitude equations, describing interaction of several modes which became unstable due to the wave bifurcation, is carried out. It is shown that as a result of competition between modes depending on the value of the parameter defining the strength of interaction only two regimes are possible: either quasi one-dimensional travelling waves (there exists only one nonzero mode) or standing waves (all the modes are nonzero). A possible mechanism for the transition from standing waves to traveling waves with a half wavelength, observed in the Belousov–Zhabotinsky reaction dispersed in a water-in-oil aerosol microemulsion, is considered. }}