АТТРАКТОР БЕЛЫХ В ОТОБРАЖЕНИИ ЗАСЛАВСКОГО И ЕГО ТРАНСФОРМАЦИЯ ПРИ СГЛАЖИВАНИИ


Образец для цитирования:

Если при задании оператора эволюции динамических систем допустить использование негладких или разрывных функций, то ситуации квазигиперболической хаотической динамики реализуются достаточно просто. Это имеет место, например, на аттракторах в модельном отображении Лози и в отображении Белых. В настоящей статье рассматривается квазигиперболический аттрактор Белых в отображении, описывающем динамику ротатора с диссипацией в присутствии периодических толчков, у которых интенсив- ность зависит по пилообразному закону от мгновенной угловой координаты ротатора, а также исследуется трансформация аттрактора при сглаживании пилообразной функции. Представлены преобразования, сводящие задачу к отображению Белых стандартной формы. Приводятся результаты численных расчетов, иллюстрирующих динамику системы с непрерывным временем на аттракторе Белых. Представлены и обсуждаются также результаты для модели со сглаженной пилообразной функцией в зависимости от параметра, характеризующего масштаб сглаживания. На графиках зависимости показателей Ляпунова при сглаживании пилообразной функции можно видеть появление окон периодической динамики, что говорит о нарушении квазигиперболической природы аттрактора. Приведены также карты динамических режимов на плоскости параметров системы, где присутствуют области периодических движений («языки Арнольда»), уменьшающиеся по мере уменьшения характерного масштаба сглаживания и исчезающие в предельном случае разрывной пилообразной функции. Поскольку изначально аттрактор Белых введен в контексте радиофизических задач (фазовая автоподстройка частоты), предпринятый здесь анализ представляет интерес с точки зрения возможного использования хаотической динамики на этом аттракторе в электронных устройствах.

 

DOI: 
10.18500/0869-6632-2018-26-1-64-79
Статус: 
одобрено к публикации
Краткое содержание (PDF): 

BibTeX

@article{Kuznetsov-IzvVUZ_AND-26-1-64,
author = {Сергей Петрович Кузнецов},
title = {АТТРАКТОР БЕЛЫХ В ОТОБРАЖЕНИИ ЗАСЛАВСКОГО И ЕГО ТРАНСФОРМАЦИЯ ПРИ СГЛАЖИВАНИИ},
year = {2018},
journal = {Известия высших учебных заведений. Прикладная нелинейная динамика},
volume = {26},number = {1},
url = {https://old-andjournal.sgu.ru/ru/articles/attraktor-belyh-v-otobrazhenii-zaslavskogo-i-ego-transformaciya-pri-sglazhivanii},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2018-26-1-64-79},pages = {64--79},issn = {0869-6632},
keywords = {Динамическая система,аттрактор,Хаос,Отображение,ротатор,показатель Ляпунова},
abstract = {Если при задании оператора эволюции динамических систем допустить использование негладких или разрывных функций, то ситуации квазигиперболической хаотической динамики реализуются достаточно просто. Это имеет место, например, на аттракторах в модельном отображении Лози и в отображении Белых. В настоящей статье рассматривается квазигиперболический аттрактор Белых в отображении, описывающем динамику ротатора с диссипацией в присутствии периодических толчков, у которых интенсив- ность зависит по пилообразному закону от мгновенной угловой координаты ротатора, а также исследуется трансформация аттрактора при сглаживании пилообразной функции. Представлены преобразования, сводящие задачу к отображению Белых стандартной формы. Приводятся результаты численных расчетов, иллюстрирующих динамику системы с непрерывным временем на аттракторе Белых. Представлены и обсуждаются также результаты для модели со сглаженной пилообразной функцией в зависимости от параметра, характеризующего масштаб сглаживания. На графиках зависимости показателей Ляпунова при сглаживании пилообразной функции можно видеть появление окон периодической динамики, что говорит о нарушении квазигиперболической природы аттрактора. Приведены также карты динамических режимов на плоскости параметров системы, где присутствуют области периодических движений («языки Арнольда»), уменьшающиеся по мере уменьшения характерного масштаба сглаживания и исчезающие в предельном случае разрывной пилообразной функции. Поскольку изначально аттрактор Белых введен в контексте радиофизических задач (фазовая автоподстройка частоты), предпринятый здесь анализ представляет интерес с точки зрения возможного использования хаотической динамики на этом аттракторе в электронных устройствах.   }}