Хаос

ПРОСТЫЕ ЭЛЕКТРОННЫЕ ГЕНЕРАТОРЫ ХАОСА И ИХ СХЕМОТЕХНИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Тема и цель исследования. Цель работы состоит в проведении обзора описанных в литературе и оригинальных схем генераторов хаоса.

АТТРАКТОР БЕЛЫХ В ОТОБРАЖЕНИИ ЗАСЛАВСКОГО И ЕГО ТРАНСФОРМАЦИЯ ПРИ СГЛАЖИВАНИИ

Если при задании оператора эволюции динамических систем допустить использование негладких или разрывных функций, то ситуации квазигиперболической хаотической динамики реализуются достаточно просто. Это имеет место, например, на аттракторах в модельном отображении Лози и в отображении Белых.

ОДНОРОДНО ГИПЕРБОЛИЧЕСКИЙ АТТРАКТОР В СИСТЕМЕ НА ОСНОВЕ СВЯЗАННЫХ ОСЦИЛЛЯТОРОВ С СЕПАРАТРИСОЙ В ВИДЕ «ВОСЬМЕРКИ»

В работе предложена и исследована новая автономная система с гиперболической хаотической динамикой, отвечающей аттрактору Смейла–Вильямса в отображении Пуанкаре, сконструированная на основе модели, рассмотренной в свое время Ю.И. Неймарком и имеющей на фазовой плоскости сепаратрису в форме восьмерки. Предлагаемая модель составлена из двух подсистем Неймарка, характеризуемых обобщенными координатами x и y.

ФРАКТАЛЬНАЯ ГЕОМЕТРИЯ В ЛИЦАХ И СУДЬБАХ

Статья посвящена основам фрактальной геометрии и судьбам ее создателей. С возможной степенью детальности изложены биографии и открытия Феликса Хаусдорфа и Абрама Самойловича Безиковича – главных действующих лиц грандиозного спектакля под названием фрактальная геометрия. Несомненно, что автором, режиссером и постановщиком этого спектакля является Бенуа Мандельброт.

КРИТИЧЕСКАЯ ДИНАМИКА ОДНОМЕРНЫХ ОТОБРАЖЕНИЙ. Часть 1. Сценарий Фейгенбаума

В обзорном плане излагаются основные рузультаты, характеризу­ющие сценарий перехода к хаосу через каскад бифуркаций удвоения периода в контексте теории критических явлений. Даны компьютерные иллюстрации скейлинга. Представлены приближенный ренормгрупповой анализ, позволяющий построить процедуру ренормпреобразования в явной форме, и примеры нелинейных систем, демонстрирующих обсуждаемый тип критического поведения.

РАСЧЕТ СТАРШЕГО ПОКАЗАТЕЛЯ ЛЯПУНОВА ХАОТИЧЕСКИХ РЕЖИМОВ КОЛЕБАНИЙ ПО ТОЧЕЧНЫМ ПРОЦЕССАМ ПРИ НАЛИЧИИ ШУМА

Предложена модификация метода расчета старшего показателя Ляпунова хаотических режимов колебаний по точечным процессам при наличии измерительного шума, не влияющего на динамику системы, которая позволяет проводить проверку достоверности вычисляемых динамических характеристик. На примере модели Ресслера в режиме фазо-когерентного хаоса рассмотрены особенности применения данного подхода к точечным процессам моделей «накопление–сброс» и «пересечение порога».

ЭНТРОПИЯ И ПРОГНОЗ ВРЕМЕННЫХ РЯДОВ В ТЕОРИИ ДИНАМИЧЕСКИХ СИСТЕМ

В работе дается современный взгляд на такие понятия, как размерность и энтропия динамических систем. Описание данных характеристик включает в рассмотрение другие представления и свойства, относящиеся к сложному поведению нелинейных систем – размерность вложения, горизонт предсказуемости и др., которые также используются в работе. Изучается вопрос о возможности применения этих концепций к реальным наблюдаемым экономического происхождения – ценам акций компаний Schlumberger, Deutsche Bank, Honda, Toyota, Starbucks, BP.

АТТРАКТОРЫ ТИПА СМЕЙЛА–ВИЛЬЯМСА В МОДЕЛЬНЫХ СИСТЕМАХ С ИМПУЛЬСНЫМ ПЕРИОДИЧЕСКИМ ВОЗДЕЙСТВИЕМ

Сконструировано и исследовано несколько примеров модельных неавтономных систем с гиперболическими аттракторами типа Смейла–Вильямса в стробоскопическом отображении. Их динамика определяется присутствием внешнего воздействия в виде периодической последовательности коротких импульсов, причем за период воздействия угловая координата или фаза ведет себя соответственно итерациям растягивающего отображения окружности с хаотической динамикой.

 

МЕТОДЫ ИЗМЕРЕНИЙ ХАОТИЧЕСКОЙ СИНХРОНИЗАЦИИ

Рассматриваются универсальные методы количественного измерения синхронизации хаоса. Детально описывается подход к измерению хаотической синхронизации, основанный на использовании усредненной функции когерентности.

 

СТАБИЛИЗАЦИЯ ХАОСА В СИСТЕМЕ РЕССЛЕРА ИМПУЛЬСНЫМ И ГАРМОНИЧЕСКИМ СИГНАЛОМ

В работе исследуется стабилизация хаоса в системе Ресслера внешним сигналом. Рассматриваются различные варианты внешнего воздействия: импульсное (последовательность дельта-функций) и гармоническое. Проведен сравнительный анализ эффективности стабилизации различными сигналами для ленточного и винтового хаоса. Показано, что картина синхронизации зависит от направления внешнего сигнала.

 

Страницы