Динамика двухкомпонентных параболических систем шредингеровского типа


Образец для цитирования:

Предмет исследования. Рассматривается локальная динамика важного для приложений класса двухкомпонентных нелинейных систем параболических уравнений. Эти системы содержат малый параметр, который фигурирует в коэффициентах диффузии и характеризует «близость» исходной системы параболического типа к гиперболической системе. При достаточно естественных условиях на коэффициенты линеаризованного уравнения реализуются критические в задаче об устойчивости стационара случаи. Новизна. Важным является то обстоятельство, что эти критические случаи имеют бесконечную размерность: бесконечно много корней характеристического уравнения стремятся к мнимой оси при стремлении к нулю малого параметра. Специфика всех рассматриваемых критических случаев характерна для систем шредингеровского типа и, в частности, для классического уравнения Шредингера. Эти особенности связаны с расположением корней характеристического уравнения. В статье исследуются три наиболее важных случая. Отметим, что они принципиально отличаются друг от друга. Это отличие в своей основе обусловлено наличием в каждом из рассматриваемых случаев специфических резонансных соотношений. Именно эти соотношения определяют структуру нелинейных функций, входящих в нормальные формы. Методы исследования. Предложен алгоритм нормализации, то есть сведения исходной системы к бесконечной системе обыкновенных дифференциальных уравнений для медленно меняющихся амплитуд. Полученные результаты. Выделены ситуации, когда соответствующие системы удается компактно записать в виде краевых задач со специальными нелинейностями. Эти краевые задачи играют роль нормальных форм для исходных параболических систем. Их нелокальная динамика определяет поведение решений исходной системы с начальными условиями из некоторой достаточно малой и не зависящей от малого параметра окрестности состояния равновесия. В качестве важных приложений рассмотрены скалярные комплексные параболические уравнения шредингеровского типа. Выводы. Задача о локальной динамике двухкомпонентных параболических систем шредингеровского типа сводится к изучению нелокального поведения решений специальных нелинейных эволюционных уравнений.

 

 
DOI: 
10.18500/0869-6632-2018-26-5-81-100
УДК: 
517.9
Статус: 
одобрено к публикации
Краткое содержание (PDF): 

BibTeX

@article{Kaschenko-IzvVUZ_AND-26-5-81,
author = {Сергей Александрович Кащенко },
title = {Динамика двухкомпонентных параболических систем шредингеровского типа},
year = {2018},
journal = {Известия высших учебных заведений. Прикладная нелинейная динамика},
volume = {26},number = {5},
url = {https://old-andjournal.sgu.ru/ru/articles/dinamika-dvuhkomponentnyh-parabolicheskih-sistem-shredingerovskogo-tipa},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2018-26-5-81-100},pages = {81--100},issn = {0869-6632},
keywords = {​динамика,нормальные формы,уравнение Шредингера},
abstract = {Предмет исследования. Рассматривается локальная динамика важного для приложений класса двухкомпонентных нелинейных систем параболических уравнений. Эти системы содержат малый параметр, который фигурирует в коэффициентах диффузии и характеризует «близость» исходной системы параболического типа к гиперболической системе. При достаточно естественных условиях на коэффициенты линеаризованного уравнения реализуются критические в задаче об устойчивости стационара случаи. Новизна. Важным является то обстоятельство, что эти критические случаи имеют бесконечную размерность: бесконечно много корней характеристического уравнения стремятся к мнимой оси при стремлении к нулю малого параметра. Специфика всех рассматриваемых критических случаев характерна для систем шредингеровского типа и, в частности, для классического уравнения Шредингера. Эти особенности связаны с расположением корней характеристического уравнения. В статье исследуются три наиболее важных случая. Отметим, что они принципиально отличаются друг от друга. Это отличие в своей основе обусловлено наличием в каждом из рассматриваемых случаев специфических резонансных соотношений. Именно эти соотношения определяют структуру нелинейных функций, входящих в нормальные формы. Методы исследования. Предложен алгоритм нормализации, то есть сведения исходной системы к бесконечной системе обыкновенных дифференциальных уравнений для медленно меняющихся амплитуд. Полученные результаты. Выделены ситуации, когда соответствующие системы удается компактно записать в виде краевых задач со специальными нелинейностями. Эти краевые задачи играют роль нормальных форм для исходных параболических систем. Их нелокальная динамика определяет поведение решений исходной системы с начальными условиями из некоторой достаточно малой и не зависящей от малого параметра окрестности состояния равновесия. В качестве важных приложений рассмотрены скалярные комплексные параболические уравнения шредингеровского типа. Выводы. Задача о локальной динамике двухкомпонентных параболических систем шредингеровского типа сводится к изучению нелокального поведения решений специальных нелинейных эволюционных уравнений.     }}