ИНИЦИИРОВАННЫЕ КОРОТКИМИ ИМПУЛЬСАМИ УСТОЙЧИВЫЕ КВАЗИПЕРИОДИЧЕСКИЕ И ПЕРИОДИЧЕСКИЕ РЕЖИМЫ В СИСТЕМЕ С НЕУСТОЙЧИВЫМ ПРЕДЕЛЬНЫМ ЦИКЛОМ


Образец для цитирования:

Рассматривается динамика системы с неустойчивым предельным циклом под периодической последовательностью δ-импульсов. Показано, что при наличии в системе кубической нелинейности в узкой области значений параметров внешнего воздействия наблюдаются устойчивые квазипериодические режимы и режимы захвата фазы (синхронизация). Изучено влияние основных параметров системы на возникновение таких режимов.

Ключевые слова: 
-
DOI: 
10.18500/0869-6632-2006-14-1-72-81
Литература

1. Неймарк Ю.И., Ланда П.С. Стохастические и хаотические колебания. М.: Наука, 1987.

2. Берже П., Помо И., Видаль К. Порядок в хаосе. М.: Мир, 1991.

3. Ott E. Chaos in dynamical systems. Cambridge university press, 1993.

4. Анищенко В.С. Сложные колебания в простых системах. М.: Наука, 1990.

5. Winfree A.T. The Geometry of Biological Time. Berlin: Springer, 1980.

6. Пиковский А., Розенблюм М., Куртс Ю. Синхронизация. Фундаментальное нелинейное явление. М.: Техносфера, 2003.

7. Caldas I.L., Tasson H. Limit cycles of periodically forced oscillations // Phys. Lett. 1989. Vol. A135. P. 264.

8. Steeb W.H., Kunick A. Chaos in limit-cycle systems with external periodic excitation // Int. J. of Nonlinear Mechanics. 1987. No22. P. 349.

9. Gonzalez D.L. and Piro O. Chaos in a nonlinear driven oscillator with exact solution // Phys. Rev. Lett. 1983. Vol. 50, No12. P. 870.

10. Ding E.J. Analytic treatment of periodic orbit systematics for a nonlinear driven oscillator // Phys. Rev. 1986. Vol.A34, No4. P. 3547.

11. Ding E.J. Analytic treatment of a driven oscillator with a limit cycle // Phys. Rev. 1987. Vol. A35, No6. P. 2669.

12. Ding E.J. Structure of parameter space for a prototype nonlinear oscillator // Phys. Rev. 1987. Vol. A36, No3. P. 1488.

13. Ding E.J. Structure of the parameter space for the van der Pol oscillator // Physica Scripta. 1988. Vol. 38. P. 9.

14. Ullmann K. and Caldas I.L. Transitions in the parameter space of a periodically forced dissipative system // Chaos, Solitons & Fractals. 1996. No11. P. 1913.

15. Keener J.P., Glass L. Global bifurcation of a periodically forced nonlinear oscillator // J. Math. Biology. 1984. No21. P. 175.

16. Glass L., Sun J. Periodic forcing of a limit-cycle oscillator: Fixed points, Arnold tongues, and the global organization of bifurcations // Phys. Rev. 1994. Vol. 50, No6. P. 5077.

17. Ding E.J. and Hemmer P.C. Exact treatment of mode locking for a piecewise linear map // Journal of Statistical Physics. 1987. Vol.46, No1-2. P. 99.

18. Кузнецов А. П., Тюрюкина Л. В. Осциллятор Ван дер Поля с импульсным воздействием: от потока к отображениям // Изв. вузов. Прикладная нелинейная динамика. 2001. Т.9, No6. С. 69.

19. Glass L., et al. Global bifurcations of a periodically forced biological oscillator // Phys. Rev. A. 1983. No29. P. 1348.

20. Кузнецов А. П., Тюрюкина Л. В. Синхронизация автоколебательной системы Ван дер Поля – Дуффинга короткими импульсами // Изв. вузов. Прикладная нелинейная динамика. 2004. Т.12, No5. C. 16.

21. Кузнецов А.П., Кузнецов С.П., Рыскин Н.М. Нелинейные колебания. М.: Физматлит, 2002. 292 с.

22. Кузнецов С.П. Динамический хаос. М.: Физматлит, 2001. 296 с.

Статус: 
одобрено к публикации
Краткое содержание (PDF): 
Текст в формате PDF: 

BibTeX

@article{Kuznetsov-IzvVUZ_AND-14-1-72,
author = {Александр Петрович Кузнецов and Людмила Владимировна Тюрюкина},
title = {ИНИЦИИРОВАННЫЕ КОРОТКИМИ ИМПУЛЬСАМИ УСТОЙЧИВЫЕ КВАЗИПЕРИОДИЧЕСКИЕ И ПЕРИОДИЧЕСКИЕ РЕЖИМЫ В СИСТЕМЕ С НЕУСТОЙЧИВЫМ ПРЕДЕЛЬНЫМ ЦИКЛОМ},
year = {2006},
journal = {Известия высших учебных заведений. Прикладная нелинейная динамика},
volume = {14},number = {1},
url = {https://old-andjournal.sgu.ru/ru/articles/iniciirovannye-korotkimi-impulsami-ustoychivye-kvaziperiodicheskie-i-periodicheskie-rezhimy},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2006-14-1-72-81},pages = {72--81},issn = {0869-6632},
keywords = {-},
abstract = {Рассматривается динамика системы с неустойчивым предельным циклом под периодической последовательностью δ-импульсов. Показано, что при наличии в системе кубической нелинейности в узкой области значений параметров внешнего воздействия наблюдаются устойчивые квазипериодические режимы и режимы захвата фазы (синхронизация). Изучено влияние основных параметров системы на возникновение таких режимов. }}