ОБРАТНЫЕ СТОХАСТИЧЕСКИЕ БИФУРКАЦИИ В СИСТЕМЕ ЭНО


Образец для цитирования:

В работе рассматриваются стохастически возмущенные предельные циклы дискретных динамических систем в зоне удвоения периода. Исследуется явление обратных стохастических бифуркаций – уменьшение кратности цикла при увеличении интенсивности шума. Предлагается метод анализа обратных стохастических бифуркаций на основе техники функции стохастической чувствительности. Конструктивные возможности данного метода демонстрируются на примере двумерного отображения Эно.

DOI: 
10.18500/0869-6632-2011-19-2-31-42
Литература

1. Stratonovich R.L. Topics in the Theory of Random Noise. New York: Gordon and Breach, 1963.

2. Horsthemke W., Lefever R. Noise-Induced Transitions. Berlin: Springer, 1984.

3. Landa P.S., McClintock P.V.E. Changes in the dynamical behavior of nonlinear systems induced by noise // Physics Reports. 2000. Vol. 323, No 1. P. 1.

4. Lindner B., Garcia-Ojalvo J., Neiman A., Schimansky-Geier L. Effects of noise in excitable systems // Physics Reports. 2004. Vol. 392. P. 321.

5. Gammaitoni L., et al. Stochastic resonance // Rev. Mod. Phys. 1998. Vol. 70. P. 223.

6. McDonnell M.D., Stocks N.G., Pearce C.E.M., Abbott D. Stochastic resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization. Cambridge University Press, 2008.

7. Matsumoto K., Tsuda I. Noise-induced order // J. Stat. Phys. 1983. Vol. 33. P. 757.

8. Gassmann F. Noise-induced chaos-order transitions // Phys. Rev. E. 1997. Vol. 55. P. 2215.

9. Gao J.B., Hwang S.K., Liu J.M. When can noise induce chaos? // Phys. Rev. Lett. 1999. Vol. 82. P. 1132.

10. Mayer-Kress G., Haken H. The influence of noise on the logistic model //J. Stat. Phys. 1981. Vol. 29. P.149.

11. Анищенко В.С. Сложные колебания в простых системах. М.: Наука, 1990.

12. Анищенко В.С., Астахов В.В., Вадивасова Т.Е., Нейман А.Б., Стрелкова Г.И., Шиманский-Гайер Л. Нелинейные эффекты в хаотических и стохастических системах. Москва-Ижевск: ИКИ, 2003.

13. Bashkirtseva I.A., Ryashko L.B. Sensitivity analysis of the stochastically and periodically forced Brusselator // Physica A. 2000. Vol. 278. P. 126.

14. Fedotov S., Bashkirtseva I., Ryashko L. Stochastic dynamo model for subcritical transition // Phys. Rev.E. 2006. Vol. 73. P.066307.

15. Arnold L. Random Dynamical Systems. Springer-Verlag, 1998.

16. Вадивасова Т.Е., Анищенко В.С. Стохастические бифуркации // Изв. вузов. Прикладная нелинейная динамика. 2009. Т. 17, No 5. С. 3.

17. Lefever R., Turner J. Sensitivity of a Hopf bifurcation to external multiplicative noise // in Fluctuations and Sensitivity in Equilibrium Systems / Eds W. Horsthemke and D.K. Kondepudi. Berlin: Springer. 1984. P. 143.

18. Lefever R., Turner J. Sensitivity of a Hopf bifurcation to multiplicative colored noise // Phys. Rev. Lett. 1986. Vol. 56. P. 1631.

19. Franzoni L., Mannella R., McClintock P., Moss F. Postponement of Hopf bifurcations by multiplicative colored noise // Phys. Rev. A. 1987. Vol. 36. P. 834.

20. Arnold L., Bleckert G., Schenk-Hoppe K. The stochastic Brusselator: Parametric noise destroys Hopf bifurcation // In Stochastic Dynamics. New-York: Springer. 1999. P. 71.

21. Namachchivaya N.Sri. Hopf bifurcation in the presence of both parametric and external stochastic excitations // J. Appl. Mech. 1988. Vol. 110. P. 923.

22. Schenk-Hoppe K.R. Bifurcation scenarios of the noisy Duffing–van der Pol oscillator // Nonlinear dynamics. 1996. Vol. 11. P. 255.

23. Leung H.K. Stochastic Hopf bifurcation in a biased van der Pol model // Physica A. 1998. Vol. 254. P. 146.

24. Bashkirtseva I., Ryashko L., Schurz H. Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances // Chaos, Solitons and Fractals. 2009. Vol. 39. P. 72.

25. Башкирцева И.А., Перевалова Т.В., Ряшко Л.Б. Анализ индуцированных шумом бифуркаций в системе Хопфа // Изв. вузов. Прикладная нелинейная динамика. 2010. Т. 18, No 1. С. 37.

26. Crutchfield J. P., Nauenberg M., Rudnick J. Scaling for external noise at the onset of chaos // Phys. Rev. Lett. 1981. Vol. 46, No 14. P. 933.

27. Crutchfield J. P., Farmer J., Huberman B. A. Fluctuation and simple chaotic dynamics // Phys. Rep. 1982. Vol. 92, No 2. P. 45.

28. Кузнецов А.П., Капустина Ю.В. Свойство скейлинга при переходе к хаосу в модельных отображениях с шумом // Изв. вузов. Прикладная нелинейная динамика. 2000. Т.8, No 6. С. 78.

29. Кузнецов А.П., Кузнецов С.П, Седова Ю.В. О свойствах скейлинга при воздействии шума в отображении окружности с числом вращения, заданным золотым средним // Изв. вузов. Прикладная нелинейная динамика. 2005. Т.13, No 5. С. 56.

30. Bashkirtseva I. A., Ryashko L. B. Sensitivity analysis of stochastically forced Lorenz model cycles under period-doubling bifurcations // Dynamic Systems and Applications. 2002. Vol. 11. P. 293.

31. Ryagin M., Ryashko L. The analysis of the stochastically forced periodic attractors for Chua’s circuit // Int. J. Bifurcation Chaos. 2004. Vol. 14. P. 3981.

32. Bashkirtseva I.A., Ryashko L.B. Sensitivity and chaos control for the forced nonlinear oscillations // Chaos, Solitons and Fractals, 2005. Vol. 26. P. 1437.

33. Bashkirtseva I., Ryashko L., Tsvetkov I. Sensitivity analysis of stochastic equilibria and cycles for the discrete dynamic systems // Dynamics of Continuous, Discrete and Impulsive Systems. Series A: Mathematical Analysis. 2010. Vol. 17. P. 501.

34. Bashkirtseva I., Ryashko L., Stikhin P. Noice-induced backward bifurcations of stochastic 3D-cycles // Fluctuation and Noise Letters. 2010. Vol. 9, No 1. P. 89.

35. Башкирцева И.А., Ряшко Л.Б., Федотов С.В., Цветков И.Н. Обратные стохастические бифуркации циклов дискретных систем // Нелинейная динамика. 2010. Т. 6, No 4. С. 737.

36. Elaydi S. N. An Introduction to Difference Equations. Springer: Berlin, 1999.

Статус: 
одобрено к публикации
Краткое содержание (PDF): 
Текст в формате PDF: 

BibTeX

@article{Bashkirtseva-IzvVUZ_AND-19-2-31,
author = {Ирина Адольфовна Башкирцева and Лев Борисович Ряшко and Сергей Петрович Федотов and Иван Николаевич Цветков },
title = {ОБРАТНЫЕ СТОХАСТИЧЕСКИЕ БИФУРКАЦИИ В СИСТЕМЕ ЭНО},
year = {2011},
journal = {Известия высших учебных заведений. Прикладная нелинейная динамика},
volume = {19},number = {2},
url = {https://old-andjournal.sgu.ru/ru/articles/obratnye-stohasticheskie-bifurkacii-v-sisteme-eno},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2011-19-2-31-42},pages = {31--42},issn = {0869-6632},
keywords = {бифуркации,дискретные стохастические системы,модель Эно,стохастическая чувствительность.},
abstract = {В работе рассматриваются стохастически возмущенные предельные циклы дискретных динамических систем в зоне удвоения периода. Исследуется явление обратных стохастических бифуркаций – уменьшение кратности цикла при увеличении интенсивности шума. Предлагается метод анализа обратных стохастических бифуркаций на основе техники функции стохастической чувствительности. Конструктивные возможности данного метода демонстрируются на примере двумерного отображения Эно. }}