ОБРАТНЫЕ СТОХАСТИЧЕСКИЕ БИФУРКАЦИИ В СИСТЕМЕ ЭНО
Образец для цитирования:
В работе рассматриваются стохастически возмущенные предельные циклы дискретных динамических систем в зоне удвоения периода. Исследуется явление обратных стохастических бифуркаций – уменьшение кратности цикла при увеличении интенсивности шума. Предлагается метод анализа обратных стохастических бифуркаций на основе техники функции стохастической чувствительности. Конструктивные возможности данного метода демонстрируются на примере двумерного отображения Эно.
1. Stratonovich R.L. Topics in the Theory of Random Noise. New York: Gordon and Breach, 1963.
2. Horsthemke W., Lefever R. Noise-Induced Transitions. Berlin: Springer, 1984.
3. Landa P.S., McClintock P.V.E. Changes in the dynamical behavior of nonlinear systems induced by noise // Physics Reports. 2000. Vol. 323, No 1. P. 1.
4. Lindner B., Garcia-Ojalvo J., Neiman A., Schimansky-Geier L. Effects of noise in excitable systems // Physics Reports. 2004. Vol. 392. P. 321.
5. Gammaitoni L., et al. Stochastic resonance // Rev. Mod. Phys. 1998. Vol. 70. P. 223.
6. McDonnell M.D., Stocks N.G., Pearce C.E.M., Abbott D. Stochastic resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization. Cambridge University Press, 2008.
7. Matsumoto K., Tsuda I. Noise-induced order // J. Stat. Phys. 1983. Vol. 33. P. 757.
8. Gassmann F. Noise-induced chaos-order transitions // Phys. Rev. E. 1997. Vol. 55. P. 2215.
9. Gao J.B., Hwang S.K., Liu J.M. When can noise induce chaos? // Phys. Rev. Lett. 1999. Vol. 82. P. 1132.
10. Mayer-Kress G., Haken H. The influence of noise on the logistic model //J. Stat. Phys. 1981. Vol. 29. P.149.
11. Анищенко В.С. Сложные колебания в простых системах. М.: Наука, 1990.
12. Анищенко В.С., Астахов В.В., Вадивасова Т.Е., Нейман А.Б., Стрелкова Г.И., Шиманский-Гайер Л. Нелинейные эффекты в хаотических и стохастических системах. Москва-Ижевск: ИКИ, 2003.
13. Bashkirtseva I.A., Ryashko L.B. Sensitivity analysis of the stochastically and periodically forced Brusselator // Physica A. 2000. Vol. 278. P. 126.
14. Fedotov S., Bashkirtseva I., Ryashko L. Stochastic dynamo model for subcritical transition // Phys. Rev.E. 2006. Vol. 73. P.066307.
15. Arnold L. Random Dynamical Systems. Springer-Verlag, 1998.
16. Вадивасова Т.Е., Анищенко В.С. Стохастические бифуркации // Изв. вузов. Прикладная нелинейная динамика. 2009. Т. 17, No 5. С. 3.
17. Lefever R., Turner J. Sensitivity of a Hopf bifurcation to external multiplicative noise // in Fluctuations and Sensitivity in Equilibrium Systems / Eds W. Horsthemke and D.K. Kondepudi. Berlin: Springer. 1984. P. 143.
18. Lefever R., Turner J. Sensitivity of a Hopf bifurcation to multiplicative colored noise // Phys. Rev. Lett. 1986. Vol. 56. P. 1631.
19. Franzoni L., Mannella R., McClintock P., Moss F. Postponement of Hopf bifurcations by multiplicative colored noise // Phys. Rev. A. 1987. Vol. 36. P. 834.
20. Arnold L., Bleckert G., Schenk-Hoppe K. The stochastic Brusselator: Parametric noise destroys Hopf bifurcation // In Stochastic Dynamics. New-York: Springer. 1999. P. 71.
21. Namachchivaya N.Sri. Hopf bifurcation in the presence of both parametric and external stochastic excitations // J. Appl. Mech. 1988. Vol. 110. P. 923.
22. Schenk-Hoppe K.R. Bifurcation scenarios of the noisy Duffing–van der Pol oscillator // Nonlinear dynamics. 1996. Vol. 11. P. 255.
23. Leung H.K. Stochastic Hopf bifurcation in a biased van der Pol model // Physica A. 1998. Vol. 254. P. 146.
24. Bashkirtseva I., Ryashko L., Schurz H. Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances // Chaos, Solitons and Fractals. 2009. Vol. 39. P. 72.
25. Башкирцева И.А., Перевалова Т.В., Ряшко Л.Б. Анализ индуцированных шумом бифуркаций в системе Хопфа // Изв. вузов. Прикладная нелинейная динамика. 2010. Т. 18, No 1. С. 37.
26. Crutchfield J. P., Nauenberg M., Rudnick J. Scaling for external noise at the onset of chaos // Phys. Rev. Lett. 1981. Vol. 46, No 14. P. 933.
27. Crutchfield J. P., Farmer J., Huberman B. A. Fluctuation and simple chaotic dynamics // Phys. Rep. 1982. Vol. 92, No 2. P. 45.
28. Кузнецов А.П., Капустина Ю.В. Свойство скейлинга при переходе к хаосу в модельных отображениях с шумом // Изв. вузов. Прикладная нелинейная динамика. 2000. Т.8, No 6. С. 78.
29. Кузнецов А.П., Кузнецов С.П, Седова Ю.В. О свойствах скейлинга при воздействии шума в отображении окружности с числом вращения, заданным золотым средним // Изв. вузов. Прикладная нелинейная динамика. 2005. Т.13, No 5. С. 56.
30. Bashkirtseva I. A., Ryashko L. B. Sensitivity analysis of stochastically forced Lorenz model cycles under period-doubling bifurcations // Dynamic Systems and Applications. 2002. Vol. 11. P. 293.
31. Ryagin M., Ryashko L. The analysis of the stochastically forced periodic attractors for Chua’s circuit // Int. J. Bifurcation Chaos. 2004. Vol. 14. P. 3981.
32. Bashkirtseva I.A., Ryashko L.B. Sensitivity and chaos control for the forced nonlinear oscillations // Chaos, Solitons and Fractals, 2005. Vol. 26. P. 1437.
33. Bashkirtseva I., Ryashko L., Tsvetkov I. Sensitivity analysis of stochastic equilibria and cycles for the discrete dynamic systems // Dynamics of Continuous, Discrete and Impulsive Systems. Series A: Mathematical Analysis. 2010. Vol. 17. P. 501.
34. Bashkirtseva I., Ryashko L., Stikhin P. Noice-induced backward bifurcations of stochastic 3D-cycles // Fluctuation and Noise Letters. 2010. Vol. 9, No 1. P. 89.
35. Башкирцева И.А., Ряшко Л.Б., Федотов С.В., Цветков И.Н. Обратные стохастические бифуркации циклов дискретных систем // Нелинейная динамика. 2010. Т. 6, No 4. С. 737.
36. Elaydi S. N. An Introduction to Difference Equations. Springer: Berlin, 1999.
BibTeX
author = {Ирина Адольфовна Башкирцева and Лев Борисович Ряшко and Сергей Петрович Федотов and Иван Николаевич Цветков },
title = {ОБРАТНЫЕ СТОХАСТИЧЕСКИЕ БИФУРКАЦИИ В СИСТЕМЕ ЭНО},
year = {2011},
journal = {Известия высших учебных заведений. Прикладная нелинейная динамика},
volume = {19},number = {2},
url = {https://old-andjournal.sgu.ru/ru/articles/obratnye-stohasticheskie-bifurkacii-v-sisteme-eno},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2011-19-2-31-42},pages = {31--42},issn = {0869-6632},
keywords = {бифуркации,дискретные стохастические системы,модель Эно,стохастическая чувствительность.},
abstract = {В работе рассматриваются стохастически возмущенные предельные циклы дискретных динамических систем в зоне удвоения периода. Исследуется явление обратных стохастических бифуркаций – уменьшение кратности цикла при увеличении интенсивности шума. Предлагается метод анализа обратных стохастических бифуркаций на основе техники функции стохастической чувствительности. Конструктивные возможности данного метода демонстрируются на примере двумерного отображения Эно. }}