ОДНОРОДНО ГИПЕРБОЛИЧЕСКИЙ АТТРАКТОР В СИСТЕМЕ НА ОСНОВЕ СВЯЗАННЫХ ОСЦИЛЛЯТОРОВ С СЕПАРАТРИСОЙ В ВИДЕ «ВОСЬМЕРКИ»


Образец для цитирования:

В работе предложена и исследована новая автономная система с гиперболической хаотической динамикой, отвечающей аттрактору Смейла–Вильямса в отображении Пуанкаре, сконструированная на основе модели, рассмотренной в свое время Ю.И. Неймарком и имеющей на фазовой плоскости сепаратрису в форме восьмерки. Предлагаемая модель составлена из двух подсистем Неймарка, характеризуемых обобщенными координатами x и y. В уравнения добавлены члены, придающие подсистемам автоколебательный характер. Кроме того, специальная связь между подсистемами обеспечивает утроение угла поворота вектора (x, y) при возвратах в окрестность начала координат на последовательных обходах сепаратрисы. Исследование подсистем основано на численном решении уравнений динамики с построением отображения Пуанкаре. Результаты численного моделирования (итерационная диаграмма для угловой переменной, значения показателей Ляпунова) демонстрируют, что угловая переменная подвергается растягивающему отображению окружности, а по остальным направлениям происходит сильное сжатие элемента фазового объема. Построено распределение углов между устойчивым и неустойчивым многообразиями аттрактора и с его помощью показано, что выполняется свойство трансверсальности многообразий аттрактора. Структурная устойчивость аттрактора подтверждается гладкой зависимостью старшего показателя Ляпунова от параметров. Проведенные исследования показали, что в фазовом пространстве предложенной системы в определенной области параметров наблюдается аттрактор типа Смейла–Вильямса.

 
DOI: 
10.18500/0869-6632-2016-24-6-54-64
Литература

1. Kuznetsov S.P. Hyperbolic Chaos: A Physicist’s View. Higher Education Press: Beijing and Springer-Verlag: Berlin, Heidelberg, 2012. 336 p.

2. Kuznetsov S.P. Example of a physical system with a hyperbolic attractor of the Smale–Williams type // Phys. Rev. Lett. 2005. Vol. 95. P. 144101.

3. Kuznetsov S.P. Some mechanical systems manifesting robust chaos // Nonlinear Dynamics and Mobile Robotics. 2013. Vol. 1, No 1. P. 3–22.

4. Kuznetsov S.P., Pikovsky A. Autonomous coupled oscillators with hyperbolic strange attractors //Physica D: Nonlinear Phenomena. 2007. Vol. 232. No 2. P. 87–102.

5. Kruglov V.P., Kuznetsov S.P. An autonomous system with attractor of Smale–Williams type with resonance transfer of excitation in a ring array of van der Poloscillators //Communications in Nonlinear Science and Numerical Simulation. 2011. Vol. 16. No 8. P. 3219–3223.

6. Kruglov V.P., Kuznetsov S.P., Pikovsky A. Attractor of Smale–Williams type in an autonomous distributed system // Regular and Chaotic Dynamics. 2014. Vol. 19, No 4. P. 483–494.

7. Неймарк Ю.И. Метод точечных отображений в теории нелинейных колебаний. М.: Наука, 1972. с.129–135.

8. Бутенин Н.В., Неймарк Ю.И., Фуфаев Н.Л. Введение в теорию нелинейных колебаний. М.: Наука, 1987. С. 303 и далее.

9. Benettin G., Galgani L., Giorgilli A., Strelcyn J.M. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory //Meccanica. 1980. Vol. 15. No 1. P. 9–20.

10. Shimada I., Nagashima T. A numerical approach to ergodic problem of dissipative dynamical systems //Progress of Theoretical Physics. 1979. Vol. 61. No 6. P. 1605–1616.

11. Lai Y.-C., Grebogi C., Yorke J.A., Kan I. How often are chaotic saddles nonhyperbolic? //Nonlinearity. 1993. Vol. 6. P. 779–798.

12. Anishchenko V.S., Kopeikin A.S., Kurths J., Vadivasova T.E., Strelkova G.I. Studying hyperbolicity in chaotic systems // Physics Letters A. 2000. Vol. 270. P. 301–307.

13. Kuptsov P.V. Fast numerical test of hyperbolic chaos // Phys. Rev. E. 2012. Vol. 85, No 1. P. 015203.

14. Kuznetsov S.P., Kruglov V.P. Verification of hyperbolicity for attractors of some mechanical systems with chaotic dynamics //Regular and Chaotic Dynamics. 2016. Vol. 21. No 2. P. 160–174.

15. Круглов В.П. Методика и результаты численной проверки гиперболической природы аттракторов для редуцированных моделей распределенных систем //Известия высших учебных заведений. Прикладная нелинейная динамика. 2014. Т. 22. No 6. С. 79–93.

Статус: 
одобрено к публикации
Краткое содержание (PDF): 

BibTeX

@article{Kruglov-IzvVUZ_AND-24-6-54,
author = {Вячеслав Павлович Круглов and Лейла Мухамед-Бухараевна Хаджиева },
title = {ОДНОРОДНО ГИПЕРБОЛИЧЕСКИЙ АТТРАКТОР В СИСТЕМЕ НА ОСНОВЕ СВЯЗАННЫХ ОСЦИЛЛЯТОРОВ С СЕПАРАТРИСОЙ В ВИДЕ «ВОСЬМЕРКИ»},
year = {2016},
journal = {Известия высших учебных заведений. Прикладная нелинейная динамика},
volume = {24},number = {6},
url = {https://old-andjournal.sgu.ru/ru/articles/odnorodno-giperbolicheskiy-attraktor-v-sisteme-na-osnove-svyazannyh-oscillyatorov-s},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2016-24-6-54-64},pages = {54--64},issn = {0869-6632},
keywords = {Хаос,аттрактор,соленоид Смейла–Вильямса,показатель Ляпунова},
abstract = {В работе предложена и исследована новая автономная система с гиперболической хаотической динамикой, отвечающей аттрактору Смейла–Вильямса в отображении Пуанкаре, сконструированная на основе модели, рассмотренной в свое время Ю.И. Неймарком и имеющей на фазовой плоскости сепаратрису в форме восьмерки. Предлагаемая модель составлена из двух подсистем Неймарка, характеризуемых обобщенными координатами x и y. В уравнения добавлены члены, придающие подсистемам автоколебательный характер. Кроме того, специальная связь между подсистемами обеспечивает утроение угла поворота вектора (x, y) при возвратах в окрестность начала координат на последовательных обходах сепаратрисы. Исследование подсистем основано на численном решении уравнений динамики с построением отображения Пуанкаре. Результаты численного моделирования (итерационная диаграмма для угловой переменной, значения показателей Ляпунова) демонстрируют, что угловая переменная подвергается растягивающему отображению окружности, а по остальным направлениям происходит сильное сжатие элемента фазового объема. Построено распределение углов между устойчивым и неустойчивым многообразиями аттрактора и с его помощью показано, что выполняется свойство трансверсальности многообразий аттрактора. Структурная устойчивость аттрактора подтверждается гладкой зависимостью старшего показателя Ляпунова от параметров. Проведенные исследования показали, что в фазовом пространстве предложенной системы в определенной области параметров наблюдается аттрактор типа Смейла–Вильямса.   Скачать полную версию   }}