q-­БРИЗЕРЫ: ОТ ПАРАДОКСА ФЕРМИ–ПАСТЫ–УЛАМА ДО АНОМАЛЬНОЙ ТЕПЛОПРОВОДНОСТИ¤


Образец для цитирования:

В статье дается обзор актуальных проблем нелинейной физики, в которых теория q-­бризеров – точных периодических решений, экспоненциально локализованных в модовом пространстве – находит применение.

DOI: 
10.18500/0869-6632-2011-19-1-73-85
Литература

1. Fermi E., Pasta J., and Ulam S. // Los Alamos Report, LA–1940, 1955; also in: Collected Papers of Enrico Fermi / ed. E. Segre, Vol. II (University of Chicago Press, 1965) p. 978; Many-Body Problems / ed. D. C. Mattis (World Scientific, Singapore, 1993).

2. Izrailev F.M. and Chirikov B.V. Statistical properties of a non-linear string // Dokl. Akad. Nauk SSSR. 1966. Vol. 166. 57 [Soviet. Phys. Dokl. 1966. Vol. 11. P. 30].

3. Zabusky N.J. and Kruskal M.D. Interaction of «Solitons» in a collisionless plasma and the recurrence of initial states // Phys. Rev. Lett. 1965. Vol. 15. P. 240.

4. Ford J. The Fermi–Pasta–Ulam problem: Paradox turns discovery // Phys. Rep. 1992. Vol. 213. P. 271.

5. The Fermi–Pasta–Ulam problem – The first fifty years / Eds D.K. Campbell, P. Rosenau and G.M. Zaslavsky // CHAOS. 2005. Vol. 15, No 1.

6. Berman G.P. and Izrailev F.M. The Fermi–Pasta–Ulam problem: Fifty years of progress // Chaos. 2005. Vol. 15. 015104.

7. De Luca J., Lichtenberg A.J., and Lieberman M.A. Time scale to ergodicity in the Fermi–Pasta–Ulam system // Chaos. 1995. Vol. 5. P. 283.

8. Shepelyansky D.L. Low-energy chaos in the Fermi–Pasta–Ulam problem // Nonlinearity. 1997. Vol. 10. 1331.

9. Bocchierri P., Scotti A., Bearzi B., and Loigner A. Anharmonic chain with Lennard– Jones interaction // Phys. Rev. A. 1970. Vol. 2. 2013; Galgani L. and Scotti A. Planck-like distributions in classical nonlinear mechanics // Phys. Rev. Lett. 1972. Vol. 28. 1173; Patrascioiu A. Blackbody radiation law: Quantum or classical explanation? // Phys. Rev. Lett. 1983. Vol. 50. 1879.

10. Kantz H. Vanishing stability thresholds in the thermodynamic limit of nonintegrable conservative systems // Physica D. 1989. Vol. 39. P. 322; Kantz H., Livi R. and Ruffo S. Equipartition thresholds in chains of anharmonic oscillators // J. Stat. Phys. 1994. Vol. 76. P. 627.

11. Casetti L., Cerruti-Sola M., Pettini M. and Cohen E.G.D. The Fermi–Pasta–Ulam problem revisited: Stochasticity thresholds in nonlinear Hamiltonian systems // Phys. Rev. E. 1997. Vol. 55. 6566.

12. Flach S., Ivanchenko M.V. and Kanakov O.I. q-Breathers and the Fermi–Pasta–Ulam problem // Phys. Rev. Lett. 2005. Vol. 95. 064102; Flach S., Ivanchenko M.V. and Kanakov O.I. q-Breathers in Fermi–Pasta–Ulam chains: Existence, localization, and stability // Phys. Rev. E. 2006. Vol. 73. 036618.

13. Fermi E. Evidence that a mechanic normal system is generally quasi-ergodic // Phys. Z. 1923. Vol. 24. P. 261.

14. Tuck J.L. // in Los Alamos Report LA-3990, 1968.

15. Izrailev F.M., Khasamutdinov A.I., and Chirikov B.V. Numerical experiments on the statistical behaviour of dynamical systems with a few degrees of freedom // Comput. Phys. Commun. 1973. Vol. 5. P. 11.

16. Ullmann K., Lichtenberg A.J., and Corso G. Energy equipartition starting from high-frequency modes in the Fermi–Pasta–Ulam beta oscillator chain // Phys. Rev. E. 2000. Vol. 61. 2471; De Luca J., Lichtenberg A. Transitions and time scales to equipartition in oscillator chains: Low-frequency initial conditions // Phys. Rev. E. 2002. Vol. 66. 026206.

17. Berchialla L., Giorgilli A. and Paleari S. Exponentially long times to equipartition in the thermodynamic limit // Physics Letters A. 2004. Vol. 321. P. 147.

18. Benettin G., Livi R., Ponno A. The Fermi–Pasta–Ulam problem: Scaling laws vs. initial conditions // J. Stat. Phys. 2009. Vol. 135. P. 873.

19. Giorgilli A., Paleari S., Penati T. Local chaotic behaviour in the Fermi–Pasta–Ulam system // Discr. Cont. Dyn. Sys. B. 2005. Vol. 5. P. 991.

20. Benettin G. Time scale for energy equipartition in a two-dimensional FPU model//Chaos. 2005. Vol. 15. 015108; Benettin G. and Gradenigo G. A study of the Fermi– Pasta–Ulam problem in dimension two // Chaos. 2008. Vol. 18. 013112.

21. Flach S. and Willis C.R. Discrete breathers// Phys. Rep. 1998. Vol. 295. P. 181.

22. Lyapunov M.A. The general problem of stability of motion. London: Taylor & Francis, 1992.

23. Ivanchenko M.V. et al. q-Breathers in finite two- and three-dimensional nonlinear acoustic lattices // Phys. Rev. Lett. 2006. Vol. 97. 025505.

24. Mishagin K.G. et al. q-Breathers is discrete nonlinear Schroedinger lattices // New J. Phys. 2008. Vol. 10. 073034; Nguenang J.P., Pinto R.A., Flach S. Quantum q-breathers in a finite Bose–Hubbard chain: The case of two interacting bosons // Phys. Rev. B. 2007. Vol. 75. 214303.

25. Ivanchenko M.V. q-Breathers and thermalization in acoustic chains with arbitrary nonlinearity index // Письма в ЖЭТФ. 2010. Vol. 92. P. 405.

26. Christodoulidi H., Efthymiopoulos C., and Bountis T. Energy localization on q-tori, long-term stability, and the interpretation of Fermi–Pasta–Ulam recurrences // Phys. Rev. E. 2010. 81. 016210.

27. Penati T., Flach S. Tail resonances of Fermi–Pasta–Ulam q-breathers and their impact on the pathway to equipartition // Chaos. 2007. Vol. 17. 023102.

28. Ivanchenko M.V. q-Breathers in finite lattices: nonlinearity and weak disorder // Phys. Rev. Lett. 2009. Vol. 102. 175507; Ivanchenko M.V. q-Breathers in discrete nonlinear schroedinger arrays with weak disorder // Письма в ЖЭТФ. 2009. Vol. 89, No 3. C. 170.

29. Matsuda H., Ishii K. Localization of normal modes and energy transport in disordered harmonic chain // Suppl. Prog. Theor. Phys. 1970. Vol. 45. P. 56.

30. Lepri S., Livi R., and Politi A. Thermal conduction in classical low-dimensional lattices // Phys. Rep. 2003. Vol. 377. P. 1; Dhar A. Heat transport in low-dimensional systems // Adv. Phys. 2008. Vol. 57. P. 457.

31. Chang C.W. et al. Breakdown of Fourier’s law in nanotube thermal conductors // Phys. Rev. Lett. 2008. Vol. 101. 075903.

32. Ivanchenko M.V. and Flach S. Anomalous conductivity: impact of nonlinearity and disorder. 2010. arXiv:1009.3447v1.

Статус: 
одобрено к публикации
Краткое содержание (PDF): 
Текст в формате PDF: 

BibTeX

@article{ Ivanchenko-IzvVUZ_AND-19-1-73,
author = {Михаил Васильевич Иванченко },
title = {q-­БРИЗЕРЫ: ОТ ПАРАДОКСА ФЕРМИ–ПАСТЫ–УЛАМА ДО АНОМАЛЬНОЙ ТЕПЛОПРОВОДНОСТИ¤},
year = {2011},
journal = {Известия высших учебных заведений. Прикладная нелинейная динамика},
volume = {19},number = {1},
url = {https://old-andjournal.sgu.ru/ru/articles/q-brizery-ot-paradoksa-fermi-pasty-ulama-do-anomalnoy-teploprovodnosti},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2011-19-1-73-85},pages = {73--85},issn = {0869-6632},
keywords = {Нелинейные моды,локализация энергии,q­бризеры.},
abstract = {В статье дается обзор актуальных проблем нелинейной физики, в которых теория q-­бризеров – точных периодических решений, экспоненциально локализованных в модовом пространстве – находит применение. }}