ПРОСТРАНСТВЕННО-ВРЕМЕННЫЕ СТРУКТУРЫ В МНОГОМЕРНОЙ АКТИВНОЙ СРЕДЕ, ОБУСЛОВЛЕННЫЕ МНОГОМОДОВЫМ ВЗАИМОДЕЙСТВИЕМ ВБЛИЗИ ВОЛНОВОЙ БИФУРКАЦИИ
Образец для цитирования:
Проведено исследование системы амплитудных уравнений, описывающих взаимодействие в ограниченной области нескольких мод, ставших неустойчивыми вследствие волновой бифуркации. Показано, что в результате конкуренции мод в зависимости от величины параметра, определяющего силу взаимодействия, возможны лишь два режима: или квазиодномерные бегущие волны (существует только одна ненулевая мода), или стоячие волны (все моды отличны от нуля). Этот результат подтвержден численными экспериментами для модифицированной модели Гирера–Майнхардта, в которую включено ещё одно уравнение для второго, быстро диффундирующего ингибитора.
1. Николис Г., Пригожин И. Самоорганизация в неравновесных системах. М.:Мир, 1979, 512 с.
2. Пригожин И. От существующего к возникающему. М.: Наука, 1985, 327 с.
3. Хакен Г. Синергетика. М.: Мир, 1980, 406 с.
4. Castets V., Dulos E., Boissonade J., Kepper P.D. Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern // Phys. Rev. Lett. 1990. Vol. 64. P. 29536.
5. Fields R.J., Burger M. Oscillations and travelling waves in chemical systems. New York: Wiley, 1985. 681 p.
6. Kapral R., Showalter K. Chemical waves and patterns. Dordrecht: Kluwer, 1995. 524 p.
7. Zhabotinsky A.M. A history of chemical oscillations and waves // Chaos. 1991. Vol. 1. P. 379.
8. Gong Y., Christini D.J. Antispiral waves in reaction-diffusion systems // Phys. Rev. Lett. 2003. Vol. 90. P. 088302.
9. Vanag V.K., Epstein I.R. Packet waves in a reaction-diffusion system // Phys. Rev. Lett. 2002. Vol. 88. P. 088303.
10. Vanag V.K., Epstein I.R. Dash waves in a reaction-diffusion system // Phys. Rev. Lett. 2003. Vol. 90. P. 098301.
11. Yang L., Berenstein I., Epstein I.R. Segmented waves from a spatiotemporal transverse wave instability // Phys. Rev. Lett. 2005. Vol. 95. P. 038303.
12. Vanag V.K., Epstein I.R. Resonance-induced oscillons in a reaction-diffusion system // Phys. Rev. E. 2006. Vol. 73. P. 016201.
13. Ванаг В.К. Волны и динамические структуры в реакционно-диффузионных системах. Реакция Белоусова–Жаботинского в обращенной микроэмульсии // УФН, 2004. Т. 174, № 9. C. 991.
14. Vanag V.K., Epstein I.R. Pattern formation in a tunable medium: the Belousov-Zhabotinsky reaction in an aerosol OT microemulsion // Phys Rev Lett. 2001. Vol. 87. P. 228301.
15. Turring A.M. The chemical basis of morphogenesis // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1952. Vol. 237. P. 37.
16. Zhabotinsky A.M., Dolnik M., Epstein I.R., Rovinsky A.B. Spatio-temporal patterns in a reaction-diffusion system with wave instability // J. Chem. Science. 2000. Vol. 55. P. 223.
17. Kuramoto Y. Chemical Oscillations,Waves, and Turbulence. Berlin: Springer–Verlag, 1984. 156 p.
18. Nicolis G. Introduction to nonlinear science. Cambridge University Press, 1995. 254 p.
19. Gierer A., Meinhardt H.A. Theory of biological pattern formation // Kibernetik. 1972. Vol. 12. P. 30.
20. Борина М.Ю., Полежаев А.А. Диффузионная неустойчивость в трехкомпонентной модели типа «реакция–диффузия»// Компьютерные исследования и моделирование. 2011. Т. 3, № 2. C. 135.
21. Лобанов А.И., Петров И.Б. Лекции по вычислительной математике. М.: Бином, 2006. 523 с.
BibTeX
author = {Мария Юрьевна Борина and Андрей Александрович Полежаев},
title = {ПРОСТРАНСТВЕННО-ВРЕМЕННЫЕ СТРУКТУРЫ В МНОГОМЕРНОЙ АКТИВНОЙ СРЕДЕ, ОБУСЛОВЛЕННЫЕ МНОГОМОДОВЫМ ВЗАИМОДЕЙСТВИЕМ ВБЛИЗИ ВОЛНОВОЙ БИФУРКАЦИИ},
year = {2012},
journal = {Известия высших учебных заведений. Прикладная нелинейная динамика},
volume = {20},number = {6},
url = {https://old-andjournal.sgu.ru/ru/node/450},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2012-20-6-15-24},pages = {15--24},issn = {0869-6632},
keywords = {Активная среда,диффузионная неустойчивость,волновая бифуркация,амплитудные уравнения},
abstract = {Проведено исследование системы амплитудных уравнений, описывающих взаимодействие в ограниченной области нескольких мод, ставших неустойчивыми вследствие волновой бифуркации. Показано, что в результате конкуренции мод в зависимости от величины параметра, определяющего силу взаимодействия, возможны лишь два режима: или квазиодномерные бегущие волны (существует только одна ненулевая мода), или стоячие волны (все моды отличны от нуля). Этот результат подтвержден численными экспериментами для модифицированной модели Гирера–Майнхардта, в которую включено ещё одно уравнение для второго, быстро диффундирующего ингибитора. }}