«ЭКЗОТИЧЕСКИЕ» МОДЕЛИ ФИЗИКИ ИНТЕНСИВНЫХ ВОЛН: ЛИНЕАРИЗУЕМЫЕ УРАВНЕНИЯ, ТОЧНО РЕШАЕМЫЕ ЗАДАЧИ И НЕАНАЛИТИЧЕСКИЕ НЕЛИНЕЙНОСТИ
Образец для цитирования:
Тема и цель исследования. Представлен краткий обзор публикаций и обсуждение ряда математических моделей, которые, по мнению автора, знакомы только узкому кругу специалистов. Эти модели недостаточно изучены, несмотря на их универсальность и практическую значимость. Результаты, опубликованные в разное время и в разных журналах, обобщены в рамках одной статьи. Цель – сформировать у читателя общее представление о предмете и заинтересовать его математическими, физическими или прикладными деталями, подробно изложенными в цитируемой литературе. Исследуемые модели. Обсуждаются диссипативные модели высших порядков. Рассмотрены точно линеаризуемые уравнения, содержащие неаналитические нелинейности: квадратично-кубичную (QC) и модульную (M). Анализируются уравнения типа Бюргерса, Кортевега–де Вриза, Хохлова–Заболотской, Островского–Вахненко, неоднородные и нелинейные интегро-дифференциальные уравнения. Результаты. Дано объяснение появлению диссипативных осцилляций вблизи ударного фронта. Описано формирование в QC-среде ударных волн сжатия и разрежения, устойчивых лишь при определенных параметрах «скачка», формирование периодических трапециевидных пилообразных волн и автомодельных импульсных сигналов N-типа. Рассмотрены столкновения одиночных импульсов в M-среде, обнаруживающие новые корпускулярные свойства (взаимное поглощение и аннигиляцию) и похожие на соударения сгустков химически реагирующих веществ, например, горючего и окислителя. Описаны особенности поведения «модульных» солитонов. Изучено явление нелинейного волнового резонанса в средах с QC-, Q- и М-нелинейностями. Использованы точно линеаризуемые неоднородные уравнения с источниками. Указан сдвиг максимума резонансных кривых относительно линейного положения, определяемого равенством скоростей собственной и вынужденной волн. Дан анализ упрощенных моделей для дифрагирующих пучков, полученных проецированием 3D уравнений на ось пучка. Обсуждаются сильно нелинейные волны в системах с голономными связями. Рассматриваются интегро-дифференциальные уравнения с ядрами релаксационного типа и возможности сведения их к дифференциальным и дифференциально-разностным уравнениям. Обсуждение. Материал изложен на популярном уровне. По-видимому, эти исследования могут быть продолжены, если читатели сочтут их достаточно интересными.
BibTeX
author = {Олег Владимирович Руденко},
title = {«ЭКЗОТИЧЕСКИЕ» МОДЕЛИ ФИЗИКИ ИНТЕНСИВНЫХ ВОЛН: ЛИНЕАРИЗУЕМЫЕ УРАВНЕНИЯ, ТОЧНО РЕШАЕМЫЕ ЗАДАЧИ И НЕАНАЛИТИЧЕСКИЕ НЕЛИНЕЙНОСТИ},
year = {2018},
journal = {Известия высших учебных заведений. Прикладная нелинейная динамика},
volume = {26},number = {3},
url = {https://old-andjournal.sgu.ru/ru/articles/ekzoticheskie-modeli-fiziki-intensivnyh-voln-linearizuemye-uravneniya-tochno-reshaemye},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2018-26-3-7-34},pages = {7--34},issn = {0869-6632},
keywords = {диссипативные модели,ударные фронты,линеаризуемые уравнения,QC-,Q- и М-нелинейности.},
abstract = {Тема и цель исследования. Представлен краткий обзор публикаций и обсуждение ряда математических моделей, которые, по мнению автора, знакомы только узкому кругу специалистов. Эти модели недостаточно изучены, несмотря на их универсальность и практическую значимость. Результаты, опубликованные в разное время и в разных журналах, обобщены в рамках одной статьи. Цель – сформировать у читателя общее представление о предмете и заинтересовать его математическими, физическими или прикладными деталями, подробно изложенными в цитируемой литературе. Исследуемые модели. Обсуждаются диссипативные модели высших порядков. Рассмотрены точно линеаризуемые уравнения, содержащие неаналитические нелинейности: квадратично-кубичную (QC) и модульную (M). Анализируются уравнения типа Бюргерса, Кортевега–де Вриза, Хохлова–Заболотской, Островского–Вахненко, неоднородные и нелинейные интегро-дифференциальные уравнения. Результаты. Дано объяснение появлению диссипативных осцилляций вблизи ударного фронта. Описано формирование в QC-среде ударных волн сжатия и разрежения, устойчивых лишь при определенных параметрах «скачка», формирование периодических трапециевидных пилообразных волн и автомодельных импульсных сигналов N-типа. Рассмотрены столкновения одиночных импульсов в M-среде, обнаруживающие новые корпускулярные свойства (взаимное поглощение и аннигиляцию) и похожие на соударения сгустков химически реагирующих веществ, например, горючего и окислителя. Описаны особенности поведения «модульных» солитонов. Изучено явление нелинейного волнового резонанса в средах с QC-, Q- и М-нелинейностями. Использованы точно линеаризуемые неоднородные уравнения с источниками. Указан сдвиг максимума резонансных кривых относительно линейного положения, определяемого равенством скоростей собственной и вынужденной волн. Дан анализ упрощенных моделей для дифрагирующих пучков, полученных проецированием 3D уравнений на ось пучка. Обсуждаются сильно нелинейные волны в системах с голономными связями. Рассматриваются интегро-дифференциальные уравнения с ядрами релаксационного типа и возможности сведения их к дифференциальным и дифференциально-разностным уравнениям. Обсуждение. Материал изложен на популярном уровне. По-видимому, эти исследования могут быть продолжены, если читатели сочтут их достаточно интересными. }}