Реконструкция уравнений

РЕКОНСТРУКЦИЯ ОДНОНАПРАВЛЕННО СВЯЗАННЫХ СИСТЕМ С ЗАПАЗДЫВАНИЕМ ПЕРВОГО ПОРЯДКА ПО ВРЕМЕННОЙ РЕАЛИЗАЦИИ ВЕДОМОЙ СИСТЕМЫ

Системы с запаздыванием, в том числе связанные, стали популярными моделями различных физических и биологических объектов. Нередко одна или несколько переменных таких моделей недоступны для прямого измерения, их называют скрытыми. Однако реконструкция моделей по экспериментальным сигналам при наличии скрытых переменных может быть полезна для целей верификации моделей и косвенного измерения.

ВОССТАНОВЛЕНИЕ ПО ВРЕМЕННЫМ РЯДАМ АРХИТЕКТУРЫ СВЯЗЕЙ И ПАРАМЕТРОВ ЭЛЕМЕНТОВ В АНСАМБЛЯХ СВЯЗАННЫХ ОСЦИЛЛЯТОРОВ С ЗАДЕРЖКОЙ

Цель. Предложить новый подход к восстановлению архитектуры связей и параметров элементов в ансамблях связанных осцилляторов, описываемых дифференциальными уравнениями первого порядка с запаздыванием, по временным рядам их колебаний.

РЕКОНСТРУКЦИЯ АНСАМБЛЕЙ СВЯЗАННЫХ СИСТЕМ С ЗАПАЗДЫВАНИЕМ ПО ВРЕМЕННЫМ РЯДАМ

Предложены методы реконструкции модельных дифференциальных уравнений с запаздыванием для ансамблей связанных систем с задержкой по их временным рядам. Эффективность методов продемонстрирована на примере хаотических и периодических временных рядов цепочек диффузионно связанных модельных и экспериментальных систем с запаздыванием для случаев однонаправленной и взаимной связи элементов.

 

ВОССТАНОВЛЕНИЕ СИСТЕМ НЕЙТРАЛЬНОГО ТИПА С ЗАПАЗДЫВАНИЕМ

Предложены методы реконструкции систем с задержкой, моделируемых дифференциальными уравнениями нейтрального типа с запаздыванием, по временным рядам. Эффективность методов продемонстрирована на численных примерах при восстановлении обобщенного уравнения Маккея–Гласса и модельных уравнений, описывающих качку корабля и колебания тела вертикально стоящего человека.